Answer
Verified
495.3k+ views
Hint: To solve the question, using the given information of the sum of the terms and ratio of the product of the first and the last term to the product of two middle terms form two equations and solve the equations to find the unknown terms of the arithmetic progression.
Complete step-by-step answer:
Let \[a-3d,a-d,a+d,a+3d\] be the four consecutive terms which are in arithmetic progression (AP) where \[a,d\] are integers.
The given value of the sum of these four consecutive terms of AP is equal to 32.
The sum of the four consecutive terms of AP \[=a-3d+a-d+a+d+a+3d=4a\].
\[\Rightarrow 4a=32\]
\[a=\dfrac{32}{4}=8\]
The given ratio of product of the first and the last term to the product of two middle terms is equal to 7:15.
The calculated ratio of product of the first and the last term to the product of two middle terms
\[=\dfrac{\left( a-3d \right)\left( a+3d \right)}{\left( a-d \right)\left( a+d \right)}\]
We know the formula \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
\[=\dfrac{\left( {{a}^{2}}-{{\left( 3d \right)}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[=\dfrac{\left( {{a}^{2}}-9{{d}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[\Rightarrow \dfrac{7}{15}=\dfrac{{{a}^{2}}-9{{d}^{2}}}{{{a}^{2}}-{{d}^{2}}}\]
By cross multiplication we get,
\[7\left( {{a}^{2}}-{{d}^{2}} \right)=15\left( {{a}^{2}}-9{{d}^{2}} \right)\]
\[135{{d}^{2}}-7{{d}^{2}}=15{{a}^{2}}-7{{a}^{2}}\]
\[128{{d}^{2}}=8{{a}^{2}}\]
\[16{{d}^{2}}={{a}^{2}}\]
\[{{d}^{2}}=\dfrac{{{a}^{2}}}{16}={{\left( \dfrac{a}{4} \right)}^{2}}\]
\[\Rightarrow d=\pm \dfrac{a}{4}\]
By substituting the value \[a\] in the above equation, we get
\[d=\pm \dfrac{8}{4}=\pm 2\]
Thus, the values of the four consecutive terms of arithmetic progression are as follows
For d = 2
\[a-3d=\left( 8-3\times 2 \right)=8-6=2\]
\[a-d=\left( 8-2 \right)=6\]
\[a+d=\left( 8+2 \right)=10\]
\[a+3d=\left( 8+3\times 2 \right)=8+6=14\]
For d = -2
\[a-3d=\left( 8-3\times (-2) \right)=8+6=14\]
\[a-d=\left( 8-(-2) \right)=8+2=10\]
\[a+d=\left( 8+(-2) \right)=8-2=6\]
\[a+3d=\left( 8+3\times (-2) \right)=8-6=2\]
Thus, the four consecutive terms which are in an arithmetic progression are 2,6,10,14 or 14,10,6,2.
Note: The possibility of mistake can be the calculations as the procedure of solving involves multiple steps to solve. The other mistake can be not using both the calculated positive and negative values of d , since a and d are integers.
Complete step-by-step answer:
Let \[a-3d,a-d,a+d,a+3d\] be the four consecutive terms which are in arithmetic progression (AP) where \[a,d\] are integers.
The given value of the sum of these four consecutive terms of AP is equal to 32.
The sum of the four consecutive terms of AP \[=a-3d+a-d+a+d+a+3d=4a\].
\[\Rightarrow 4a=32\]
\[a=\dfrac{32}{4}=8\]
The given ratio of product of the first and the last term to the product of two middle terms is equal to 7:15.
The calculated ratio of product of the first and the last term to the product of two middle terms
\[=\dfrac{\left( a-3d \right)\left( a+3d \right)}{\left( a-d \right)\left( a+d \right)}\]
We know the formula \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
\[=\dfrac{\left( {{a}^{2}}-{{\left( 3d \right)}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[=\dfrac{\left( {{a}^{2}}-9{{d}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[\Rightarrow \dfrac{7}{15}=\dfrac{{{a}^{2}}-9{{d}^{2}}}{{{a}^{2}}-{{d}^{2}}}\]
By cross multiplication we get,
\[7\left( {{a}^{2}}-{{d}^{2}} \right)=15\left( {{a}^{2}}-9{{d}^{2}} \right)\]
\[135{{d}^{2}}-7{{d}^{2}}=15{{a}^{2}}-7{{a}^{2}}\]
\[128{{d}^{2}}=8{{a}^{2}}\]
\[16{{d}^{2}}={{a}^{2}}\]
\[{{d}^{2}}=\dfrac{{{a}^{2}}}{16}={{\left( \dfrac{a}{4} \right)}^{2}}\]
\[\Rightarrow d=\pm \dfrac{a}{4}\]
By substituting the value \[a\] in the above equation, we get
\[d=\pm \dfrac{8}{4}=\pm 2\]
Thus, the values of the four consecutive terms of arithmetic progression are as follows
For d = 2
\[a-3d=\left( 8-3\times 2 \right)=8-6=2\]
\[a-d=\left( 8-2 \right)=6\]
\[a+d=\left( 8+2 \right)=10\]
\[a+3d=\left( 8+3\times 2 \right)=8+6=14\]
For d = -2
\[a-3d=\left( 8-3\times (-2) \right)=8+6=14\]
\[a-d=\left( 8-(-2) \right)=8+2=10\]
\[a+d=\left( 8+(-2) \right)=8-2=6\]
\[a+3d=\left( 8+3\times (-2) \right)=8-6=2\]
Thus, the four consecutive terms which are in an arithmetic progression are 2,6,10,14 or 14,10,6,2.
Note: The possibility of mistake can be the calculations as the procedure of solving involves multiple steps to solve. The other mistake can be not using both the calculated positive and negative values of d , since a and d are integers.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE