
The sum of four consecutive terms which are in an arithmetic progression is 32 and the ratio of the product of the first and the last term to the product of two middle terms is 7:15. Find the number.
Answer
519.9k+ views
Hint: To solve the question, using the given information of the sum of the terms and ratio of the product of the first and the last term to the product of two middle terms form two equations and solve the equations to find the unknown terms of the arithmetic progression.
Complete step-by-step answer:
Let \[a-3d,a-d,a+d,a+3d\] be the four consecutive terms which are in arithmetic progression (AP) where \[a,d\] are integers.
The given value of the sum of these four consecutive terms of AP is equal to 32.
The sum of the four consecutive terms of AP \[=a-3d+a-d+a+d+a+3d=4a\].
\[\Rightarrow 4a=32\]
\[a=\dfrac{32}{4}=8\]
The given ratio of product of the first and the last term to the product of two middle terms is equal to 7:15.
The calculated ratio of product of the first and the last term to the product of two middle terms
\[=\dfrac{\left( a-3d \right)\left( a+3d \right)}{\left( a-d \right)\left( a+d \right)}\]
We know the formula \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
\[=\dfrac{\left( {{a}^{2}}-{{\left( 3d \right)}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[=\dfrac{\left( {{a}^{2}}-9{{d}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[\Rightarrow \dfrac{7}{15}=\dfrac{{{a}^{2}}-9{{d}^{2}}}{{{a}^{2}}-{{d}^{2}}}\]
By cross multiplication we get,
\[7\left( {{a}^{2}}-{{d}^{2}} \right)=15\left( {{a}^{2}}-9{{d}^{2}} \right)\]
\[135{{d}^{2}}-7{{d}^{2}}=15{{a}^{2}}-7{{a}^{2}}\]
\[128{{d}^{2}}=8{{a}^{2}}\]
\[16{{d}^{2}}={{a}^{2}}\]
\[{{d}^{2}}=\dfrac{{{a}^{2}}}{16}={{\left( \dfrac{a}{4} \right)}^{2}}\]
\[\Rightarrow d=\pm \dfrac{a}{4}\]
By substituting the value \[a\] in the above equation, we get
\[d=\pm \dfrac{8}{4}=\pm 2\]
Thus, the values of the four consecutive terms of arithmetic progression are as follows
For d = 2
\[a-3d=\left( 8-3\times 2 \right)=8-6=2\]
\[a-d=\left( 8-2 \right)=6\]
\[a+d=\left( 8+2 \right)=10\]
\[a+3d=\left( 8+3\times 2 \right)=8+6=14\]
For d = -2
\[a-3d=\left( 8-3\times (-2) \right)=8+6=14\]
\[a-d=\left( 8-(-2) \right)=8+2=10\]
\[a+d=\left( 8+(-2) \right)=8-2=6\]
\[a+3d=\left( 8+3\times (-2) \right)=8-6=2\]
Thus, the four consecutive terms which are in an arithmetic progression are 2,6,10,14 or 14,10,6,2.
Note: The possibility of mistake can be the calculations as the procedure of solving involves multiple steps to solve. The other mistake can be not using both the calculated positive and negative values of d , since a and d are integers.
Complete step-by-step answer:
Let \[a-3d,a-d,a+d,a+3d\] be the four consecutive terms which are in arithmetic progression (AP) where \[a,d\] are integers.
The given value of the sum of these four consecutive terms of AP is equal to 32.
The sum of the four consecutive terms of AP \[=a-3d+a-d+a+d+a+3d=4a\].
\[\Rightarrow 4a=32\]
\[a=\dfrac{32}{4}=8\]
The given ratio of product of the first and the last term to the product of two middle terms is equal to 7:15.
The calculated ratio of product of the first and the last term to the product of two middle terms
\[=\dfrac{\left( a-3d \right)\left( a+3d \right)}{\left( a-d \right)\left( a+d \right)}\]
We know the formula \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]
\[=\dfrac{\left( {{a}^{2}}-{{\left( 3d \right)}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[=\dfrac{\left( {{a}^{2}}-9{{d}^{2}} \right)}{\left( {{a}^{2}}-{{d}^{2}} \right)}\]
\[\Rightarrow \dfrac{7}{15}=\dfrac{{{a}^{2}}-9{{d}^{2}}}{{{a}^{2}}-{{d}^{2}}}\]
By cross multiplication we get,
\[7\left( {{a}^{2}}-{{d}^{2}} \right)=15\left( {{a}^{2}}-9{{d}^{2}} \right)\]
\[135{{d}^{2}}-7{{d}^{2}}=15{{a}^{2}}-7{{a}^{2}}\]
\[128{{d}^{2}}=8{{a}^{2}}\]
\[16{{d}^{2}}={{a}^{2}}\]
\[{{d}^{2}}=\dfrac{{{a}^{2}}}{16}={{\left( \dfrac{a}{4} \right)}^{2}}\]
\[\Rightarrow d=\pm \dfrac{a}{4}\]
By substituting the value \[a\] in the above equation, we get
\[d=\pm \dfrac{8}{4}=\pm 2\]
Thus, the values of the four consecutive terms of arithmetic progression are as follows
For d = 2
\[a-3d=\left( 8-3\times 2 \right)=8-6=2\]
\[a-d=\left( 8-2 \right)=6\]
\[a+d=\left( 8+2 \right)=10\]
\[a+3d=\left( 8+3\times 2 \right)=8+6=14\]
For d = -2
\[a-3d=\left( 8-3\times (-2) \right)=8+6=14\]
\[a-d=\left( 8-(-2) \right)=8+2=10\]
\[a+d=\left( 8+(-2) \right)=8-2=6\]
\[a+3d=\left( 8+3\times (-2) \right)=8-6=2\]
Thus, the four consecutive terms which are in an arithmetic progression are 2,6,10,14 or 14,10,6,2.
Note: The possibility of mistake can be the calculations as the procedure of solving involves multiple steps to solve. The other mistake can be not using both the calculated positive and negative values of d , since a and d are integers.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
