Answer
Verified
468.9k+ views
Hint: In this problem, we will be using the concept of the sum of an arithmetic progression (A.P). In order to solve this question, we divide the sum of n terms of the two arithmetic progression(A.P) with each other and equate it with $5n+4:9n+6$.
Now we will try to get the equation in the form of the ${\text{n}}^{\text{th}}$ term of an A.P and will find the values for ‘n’. Upon putting that value of ‘n’ in $5n+4:9n+6$. We can calculate the ratio of the ${18}^{\text{th}}$ term of two given A.P.
Complete step by step solution: As mentioned in the question, there are two arithmetic progressions with different first terms and different common differences.
For the first A⋅P:-
Let the first term of A⋅P be = a, and the common difference be = d;
So, Sum of ‘n’ terms of an A⋅P is;
${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$
and the nth term of an A⋅P is;
${{a}_{n}}=a+\left( n-1 \right)d$
For the second A⋅P:-
Let the first term of A⋅P. be = A and the common difference be = D;
So, the sum of its ‘n’ terms will be;
${{S}_{n}}=\dfrac{n}{2}\left[ 2A+\left( n-1 \right)D \right]$
And the nth term of an A⋅P is;
${{A}_{n}}=A+\left( n-1 \right)D$
It’s given in the question that the ratio of the sum of ‘n’ terms of the two AP is $5n+4:\ 9n+6;$
$\Rightarrow \dfrac{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}{\dfrac{n}{2}\left[ 2\text{A}+\left( n-1 \right)\text{D} \right]}=\dfrac{5n+4}{9n+6}$
$\Rightarrow \dfrac{\left[ 2a+\left( n-1 \right)d \right]}{\left[ 2A+\left( n-1 \right)d \right]}=\dfrac{5n+4}{9n+6}$
Taking L.H.S;
When we take ‘2’ common in numerator and denominator;
\[=\dfrac{2\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{2\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}\]
$=\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}$
So, now;
\[\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\] (1)
We need to find the ratio of the 18th term of Arithmetic progression:
\[=\dfrac{18\text{th}\ \text{term}\ \text{of}\ \text{1st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ \text{2nd}\ \text{A}\cdot \text{P}}\]
$\dfrac{{{a}_{18}}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{{{A}_{18}}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}$
$=\dfrac{a+\left( 18-1 \right)d}{A+\left( 18-1 \right)D}$
$=\dfrac{a+17d}{A+17D}$ (2)
Comparing equation (2) with equation (1); $a+17d=a+\left( \dfrac{n-1}{2} \right)d$
$\Rightarrow 17=\dfrac{n-1}{2}$
$\Rightarrow n-1=17\times 2$
$\Rightarrow n-1=34$
$\Rightarrow n=34+1$
$\Rightarrow n=35$
Now, putting $n=35$ in equation (1);
\[\Rightarrow \dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\]
$\Rightarrow \dfrac{a+\left( \dfrac{35-1}{2} \right)d}{A+\left( \dfrac{35-1}{2} \right)D}=\dfrac{5\left( 35 \right)+4}{9\left( 35 \right)+6}$
$\Rightarrow \dfrac{a+\left( \dfrac{34}{2} \right)d}{A+\left( \dfrac{34}{2} \right)D}=\dfrac{175+4}{315+6}$
$\Rightarrow \dfrac{a+17d}{A+17D}=\dfrac{179}{321}$
Therefore, $\dfrac{18\text{th}\ \text{term}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}=\dfrac{179}{321}$
Hence, the ratio of ${18}^{\text{th}}$ term of ${1}^{\text{st}}$ A⋅P and ${18}^{\text{th}}$ term of ${2}^{\text{nd}}$ A⋅P is 179: 321.
Note: The sum of the ‘n’ terms of any A⋅P is ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ and ${n}^{\text{th}}$ term of an A⋅P is ${{a}_{n}}=a+\left( n-1 \right)d$ where ‘a’ is the first term of an A.P and ‘d’ is common difference of an A.P.
Now we will try to get the equation in the form of the ${\text{n}}^{\text{th}}$ term of an A.P and will find the values for ‘n’. Upon putting that value of ‘n’ in $5n+4:9n+6$. We can calculate the ratio of the ${18}^{\text{th}}$ term of two given A.P.
Complete step by step solution: As mentioned in the question, there are two arithmetic progressions with different first terms and different common differences.
For the first A⋅P:-
Let the first term of A⋅P be = a, and the common difference be = d;
So, Sum of ‘n’ terms of an A⋅P is;
${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$
and the nth term of an A⋅P is;
${{a}_{n}}=a+\left( n-1 \right)d$
For the second A⋅P:-
Let the first term of A⋅P. be = A and the common difference be = D;
So, the sum of its ‘n’ terms will be;
${{S}_{n}}=\dfrac{n}{2}\left[ 2A+\left( n-1 \right)D \right]$
And the nth term of an A⋅P is;
${{A}_{n}}=A+\left( n-1 \right)D$
It’s given in the question that the ratio of the sum of ‘n’ terms of the two AP is $5n+4:\ 9n+6;$
$\Rightarrow \dfrac{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}{\dfrac{n}{2}\left[ 2\text{A}+\left( n-1 \right)\text{D} \right]}=\dfrac{5n+4}{9n+6}$
$\Rightarrow \dfrac{\left[ 2a+\left( n-1 \right)d \right]}{\left[ 2A+\left( n-1 \right)d \right]}=\dfrac{5n+4}{9n+6}$
Taking L.H.S;
When we take ‘2’ common in numerator and denominator;
\[=\dfrac{2\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{2\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}\]
$=\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}$
So, now;
\[\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\] (1)
We need to find the ratio of the 18th term of Arithmetic progression:
\[=\dfrac{18\text{th}\ \text{term}\ \text{of}\ \text{1st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ \text{2nd}\ \text{A}\cdot \text{P}}\]
$\dfrac{{{a}_{18}}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{{{A}_{18}}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}$
$=\dfrac{a+\left( 18-1 \right)d}{A+\left( 18-1 \right)D}$
$=\dfrac{a+17d}{A+17D}$ (2)
Comparing equation (2) with equation (1); $a+17d=a+\left( \dfrac{n-1}{2} \right)d$
$\Rightarrow 17=\dfrac{n-1}{2}$
$\Rightarrow n-1=17\times 2$
$\Rightarrow n-1=34$
$\Rightarrow n=34+1$
$\Rightarrow n=35$
Now, putting $n=35$ in equation (1);
\[\Rightarrow \dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\]
$\Rightarrow \dfrac{a+\left( \dfrac{35-1}{2} \right)d}{A+\left( \dfrac{35-1}{2} \right)D}=\dfrac{5\left( 35 \right)+4}{9\left( 35 \right)+6}$
$\Rightarrow \dfrac{a+\left( \dfrac{34}{2} \right)d}{A+\left( \dfrac{34}{2} \right)D}=\dfrac{175+4}{315+6}$
$\Rightarrow \dfrac{a+17d}{A+17D}=\dfrac{179}{321}$
Therefore, $\dfrac{18\text{th}\ \text{term}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}=\dfrac{179}{321}$
Hence, the ratio of ${18}^{\text{th}}$ term of ${1}^{\text{st}}$ A⋅P and ${18}^{\text{th}}$ term of ${2}^{\text{nd}}$ A⋅P is 179: 321.
Note: The sum of the ‘n’ terms of any A⋅P is ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ and ${n}^{\text{th}}$ term of an A⋅P is ${{a}_{n}}=a+\left( n-1 \right)d$ where ‘a’ is the first term of an A.P and ‘d’ is common difference of an A.P.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers