What will be the sum of the roots of quadratic equation $2{x^2} + 4x + 6 = 0$?
Answer
Verified
510.9k+ views
Hint: In this question we have been given a quadratic equation and we have to find the sum of the roots. Roots of this quadratic equation refers to the values of x which will satisfy the given equation. Use the direct formula of sum of roots which is minus times the coefficient of x divided by the coefficient of highest power term.
Complete step-by-step answer:
Given quadratic equation is
$2{x^2} + 4x + 6 = 0$
Now we have to find out the sum of roots of the quadratic equation.
Let us consider the general quadratic equation,
$a{x^2} + bx + c = 0$
Let the roots of this quadratic equation be${x_1},{\text{ }}{x_2}$.
Now as we know that the sum of the roots of this quadratic equation is $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow {x_1} + {x_2} = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$.
Now the given quadratic equation is $2{x^2} + 4x + 6 = 0$
So, on comparing (a = 2, b = 4, c = 6)
Let the roots of this quadratic equation be$\alpha ,\beta $.
So, the sum of the roots of the quadratic equation $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow \alpha + \beta = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - 4}}{2} = - 2$.
So, the sum of the roots of the quadratic equation is -2.
So, this is the required answer.
Note: Whenever we face such types of problems there are always two methods to find the sum or even the product of the roots. The first one is the formula based approach as mentioned above, the second one involves calculation of the roots of the given quadratic equation using factorization or Dharacharya formula. The later one being length it is always advised to grasp the direct formula to solve such type of problems, it helps saving a lot of time.
Complete step-by-step answer:
Given quadratic equation is
$2{x^2} + 4x + 6 = 0$
Now we have to find out the sum of roots of the quadratic equation.
Let us consider the general quadratic equation,
$a{x^2} + bx + c = 0$
Let the roots of this quadratic equation be${x_1},{\text{ }}{x_2}$.
Now as we know that the sum of the roots of this quadratic equation is $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow {x_1} + {x_2} = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$.
Now the given quadratic equation is $2{x^2} + 4x + 6 = 0$
So, on comparing (a = 2, b = 4, c = 6)
Let the roots of this quadratic equation be$\alpha ,\beta $.
So, the sum of the roots of the quadratic equation $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow \alpha + \beta = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - 4}}{2} = - 2$.
So, the sum of the roots of the quadratic equation is -2.
So, this is the required answer.
Note: Whenever we face such types of problems there are always two methods to find the sum or even the product of the roots. The first one is the formula based approach as mentioned above, the second one involves calculation of the roots of the given quadratic equation using factorization or Dharacharya formula. The later one being length it is always advised to grasp the direct formula to solve such type of problems, it helps saving a lot of time.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE