Answer
Verified
497.1k+ views
Hint: In this question we have been given a quadratic equation and we have to find the sum of the roots. Roots of this quadratic equation refers to the values of x which will satisfy the given equation. Use the direct formula of sum of roots which is minus times the coefficient of x divided by the coefficient of highest power term.
Complete step-by-step answer:
Given quadratic equation is
$2{x^2} + 4x + 6 = 0$
Now we have to find out the sum of roots of the quadratic equation.
Let us consider the general quadratic equation,
$a{x^2} + bx + c = 0$
Let the roots of this quadratic equation be${x_1},{\text{ }}{x_2}$.
Now as we know that the sum of the roots of this quadratic equation is $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow {x_1} + {x_2} = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$.
Now the given quadratic equation is $2{x^2} + 4x + 6 = 0$
So, on comparing (a = 2, b = 4, c = 6)
Let the roots of this quadratic equation be$\alpha ,\beta $.
So, the sum of the roots of the quadratic equation $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow \alpha + \beta = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - 4}}{2} = - 2$.
So, the sum of the roots of the quadratic equation is -2.
So, this is the required answer.
Note: Whenever we face such types of problems there are always two methods to find the sum or even the product of the roots. The first one is the formula based approach as mentioned above, the second one involves calculation of the roots of the given quadratic equation using factorization or Dharacharya formula. The later one being length it is always advised to grasp the direct formula to solve such type of problems, it helps saving a lot of time.
Complete step-by-step answer:
Given quadratic equation is
$2{x^2} + 4x + 6 = 0$
Now we have to find out the sum of roots of the quadratic equation.
Let us consider the general quadratic equation,
$a{x^2} + bx + c = 0$
Let the roots of this quadratic equation be${x_1},{\text{ }}{x_2}$.
Now as we know that the sum of the roots of this quadratic equation is $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow {x_1} + {x_2} = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$.
Now the given quadratic equation is $2{x^2} + 4x + 6 = 0$
So, on comparing (a = 2, b = 4, c = 6)
Let the roots of this quadratic equation be$\alpha ,\beta $.
So, the sum of the roots of the quadratic equation $ = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - b}}{a}$
$ \Rightarrow \alpha + \beta = \dfrac{{ - {\text{ coefficient of }}x}}{{{\text{coefficient of }}{x^2}}} = \dfrac{{ - 4}}{2} = - 2$.
So, the sum of the roots of the quadratic equation is -2.
So, this is the required answer.
Note: Whenever we face such types of problems there are always two methods to find the sum or even the product of the roots. The first one is the formula based approach as mentioned above, the second one involves calculation of the roots of the given quadratic equation using factorization or Dharacharya formula. The later one being length it is always advised to grasp the direct formula to solve such type of problems, it helps saving a lot of time.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE