The surface area of a solid hemisphere with radius \[r\]is
A. \[4\pi {r^2}\]
B. \[2\pi {r^2}\]
C. \[3\pi {r^2}\]
D. \[\dfrac{2}{3}\pi {r^2}\]
Answer
Verified
503.4k+ views
Hint: The total surface area of a solid hemisphere \[\left( S \right)\]with radius \[r\] is equal to the sum of the curved surface area of the solid hemisphere and the flat surface area of the hemisphere. So, use this concept to reach the solution of the given problem.
Complete step-by-step solution -
The surface area of solid sphere with radius \[r\]= \[4\pi {r^2}\]
The diagram of solid hemisphere is shown as below:
A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface.
Curved surface area of a solid hemisphere will be half the surface area of solid hemisphere \[ = \dfrac{1}{2} \times 4\pi {r^2} = 2\pi {r^2}\]
And, the flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Hence, flat surface area of hemisphere = \[\pi {r^2}\]. Since the area of circle with radius \[r\]is \[\pi {r^2}\]
Therefore, the total surface area of a solid hemisphere \[\left( S \right)\]with radius \[r\] is equal to the sum of the curved surface area of the solid hemisphere and the flat surface area of the hemisphere.
\[
\Rightarrow S = 2\pi {r^2} + \pi {r^2} \\
\therefore S = 3\pi {r^2} \\
\]
Thus, the correct option is C. \[3\pi {r^2}\]
Note: The surface area of the solid sphere with radius \[r\]= \[4\pi {r^2}\]. A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface. The flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Complete step-by-step solution -
The surface area of solid sphere with radius \[r\]= \[4\pi {r^2}\]
The diagram of solid hemisphere is shown as below:
A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface.
Curved surface area of a solid hemisphere will be half the surface area of solid hemisphere \[ = \dfrac{1}{2} \times 4\pi {r^2} = 2\pi {r^2}\]
And, the flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Hence, flat surface area of hemisphere = \[\pi {r^2}\]. Since the area of circle with radius \[r\]is \[\pi {r^2}\]
Therefore, the total surface area of a solid hemisphere \[\left( S \right)\]with radius \[r\] is equal to the sum of the curved surface area of the solid hemisphere and the flat surface area of the hemisphere.
\[
\Rightarrow S = 2\pi {r^2} + \pi {r^2} \\
\therefore S = 3\pi {r^2} \\
\]
Thus, the correct option is C. \[3\pi {r^2}\]
Note: The surface area of the solid sphere with radius \[r\]= \[4\pi {r^2}\]. A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface. The flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE