Answer
Verified
493.2k+ views
Hint: The total surface area of a solid hemisphere \[\left( S \right)\]with radius \[r\] is equal to the sum of the curved surface area of the solid hemisphere and the flat surface area of the hemisphere. So, use this concept to reach the solution of the given problem.
Complete step-by-step solution -
The surface area of solid sphere with radius \[r\]= \[4\pi {r^2}\]
The diagram of solid hemisphere is shown as below:
A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface.
Curved surface area of a solid hemisphere will be half the surface area of solid hemisphere \[ = \dfrac{1}{2} \times 4\pi {r^2} = 2\pi {r^2}\]
And, the flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Hence, flat surface area of hemisphere = \[\pi {r^2}\]. Since the area of circle with radius \[r\]is \[\pi {r^2}\]
Therefore, the total surface area of a solid hemisphere \[\left( S \right)\]with radius \[r\] is equal to the sum of the curved surface area of the solid hemisphere and the flat surface area of the hemisphere.
\[
\Rightarrow S = 2\pi {r^2} + \pi {r^2} \\
\therefore S = 3\pi {r^2} \\
\]
Thus, the correct option is C. \[3\pi {r^2}\]
Note: The surface area of the solid sphere with radius \[r\]= \[4\pi {r^2}\]. A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface. The flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Complete step-by-step solution -
The surface area of solid sphere with radius \[r\]= \[4\pi {r^2}\]
The diagram of solid hemisphere is shown as below:
A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface.
Curved surface area of a solid hemisphere will be half the surface area of solid hemisphere \[ = \dfrac{1}{2} \times 4\pi {r^2} = 2\pi {r^2}\]
And, the flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Hence, flat surface area of hemisphere = \[\pi {r^2}\]. Since the area of circle with radius \[r\]is \[\pi {r^2}\]
Therefore, the total surface area of a solid hemisphere \[\left( S \right)\]with radius \[r\] is equal to the sum of the curved surface area of the solid hemisphere and the flat surface area of the hemisphere.
\[
\Rightarrow S = 2\pi {r^2} + \pi {r^2} \\
\therefore S = 3\pi {r^2} \\
\]
Thus, the correct option is C. \[3\pi {r^2}\]
Note: The surface area of the solid sphere with radius \[r\]= \[4\pi {r^2}\]. A solid sphere can be divided into two equal hemispheres with a flat surface and a curved surface. The flat surface area of the hemisphere is equal to the area of the circle with radius \[r\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE