Answer
Verified
463.2k+ views
Hint: This can be solved by using the electric field due to a uniformly charged disc formula. We shall substitute the given values of radius and electric field at the center of the disc to find the electric field along the axis.
Complete step-by-step answer:
The general expression for an electric field due to a uniformly charged disc of radius R and charge density σ can be written as
${{E}_{x}}=k\sigma 2\pi \left( 1-\dfrac{x}{\sqrt{{{x}^{2}}+{{R}^{2}}}} \right)$
Where, $k=\dfrac{1}{4\pi {{\in }_{0}}}$
On substituting ‘k’ in the formula, we get
${{E}_{x}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{x}{\sqrt{{{x}^{2}}+{{R}^{2}}}} \right)$
Here, the given electric field intensity at the center of the disc shall be ‘E’ i.e., $x=0$,
$E=\dfrac{\sigma }{2{{\in }_{0}}}$
Let electric field along the axis at a distance ‘x’ from the center of the disc be ‘E1’ and written as
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{x}{\sqrt{{{x}^{2}}+{{R}^{2}}}} \right)$
As $x=R$, the equation becomes
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{R}{\sqrt{{{R}^{2}}+{{R}^{2}}}} \right)$
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{R}{\sqrt{2}R} \right)$
On taking ‘R’ common, it gets cancelled
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{1}{\sqrt{2}} \right)$
We also know, $E=\dfrac{\sigma }{2{{\in }_{0}}}$
On substituting ‘E’ in the equation, we get
${{E}_{1}}=E\left( 1-\dfrac{1}{\sqrt{2}} \right)$
The percentage of reduction in the value of electric field can be calculated as
$=\dfrac{{{E}_{1}}-E}{E}\times 100$
$=\dfrac{\left( E\left( 1-\dfrac{1}{\sqrt{2}} \right)-E \right)}{E}\times 100$
$=\left( 1-\dfrac{1}{\sqrt{2}}-1 \right)\times 100$
$=-\dfrac{100}{\sqrt{2}}=70.7%$
The negative sign indicates the reduction.
Therefore, the correct answer for the given question is option (A).
Note: The electric field due to a uniformly charged disc is based on the applications of gauss’s law. The law states that the total flux of electric field over a closed surface is equal to $\dfrac{1}{{{\in }_{0}}}$ times the total charge enclosed by the surface.
Complete step-by-step answer:
The general expression for an electric field due to a uniformly charged disc of radius R and charge density σ can be written as
${{E}_{x}}=k\sigma 2\pi \left( 1-\dfrac{x}{\sqrt{{{x}^{2}}+{{R}^{2}}}} \right)$
Where, $k=\dfrac{1}{4\pi {{\in }_{0}}}$
On substituting ‘k’ in the formula, we get
${{E}_{x}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{x}{\sqrt{{{x}^{2}}+{{R}^{2}}}} \right)$
Here, the given electric field intensity at the center of the disc shall be ‘E’ i.e., $x=0$,
$E=\dfrac{\sigma }{2{{\in }_{0}}}$
Let electric field along the axis at a distance ‘x’ from the center of the disc be ‘E1’ and written as
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{x}{\sqrt{{{x}^{2}}+{{R}^{2}}}} \right)$
As $x=R$, the equation becomes
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{R}{\sqrt{{{R}^{2}}+{{R}^{2}}}} \right)$
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{R}{\sqrt{2}R} \right)$
On taking ‘R’ common, it gets cancelled
${{E}_{1}}=\dfrac{\sigma }{2{{\in }_{0}}}\left( 1-\dfrac{1}{\sqrt{2}} \right)$
We also know, $E=\dfrac{\sigma }{2{{\in }_{0}}}$
On substituting ‘E’ in the equation, we get
${{E}_{1}}=E\left( 1-\dfrac{1}{\sqrt{2}} \right)$
The percentage of reduction in the value of electric field can be calculated as
$=\dfrac{{{E}_{1}}-E}{E}\times 100$
$=\dfrac{\left( E\left( 1-\dfrac{1}{\sqrt{2}} \right)-E \right)}{E}\times 100$
$=\left( 1-\dfrac{1}{\sqrt{2}}-1 \right)\times 100$
$=-\dfrac{100}{\sqrt{2}}=70.7%$
The negative sign indicates the reduction.
Therefore, the correct answer for the given question is option (A).
Note: The electric field due to a uniformly charged disc is based on the applications of gauss’s law. The law states that the total flux of electric field over a closed surface is equal to $\dfrac{1}{{{\in }_{0}}}$ times the total charge enclosed by the surface.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE