The temperature of 3 kg of nitrogen is raised from \[10^\circ \;C\] to \[100^\circ \;C\] . Compute the difference in work done if heating were at constant pressure and at constant volume.
( For nitrogen \[{C_p} = 1400Jk{g^{ - 1}}{K^{ - 1}}\] & \[{C_V} = 740Jk{g^{ - 1}}{K^{ - 1}}\])
A. 81000 J
B. 64000 J
C. 49000 J
D. 36000 J
Answer
Verified
466.8k+ views
Hint:-First find the number of moles in 3kg of nitrogen , then use the formula work done to raise the temperature of n number of moles by \[\Delta T\]at constant pressure (\[W = n{C_p}\Delta T\]) and also for work done to raise the temperature of n number of moles by \[\Delta T\]at constant volume (\[W = n{C_V}\Delta T\]).
After finding all the differences by subtracting , this is the required answer.
Complete step-by-step solution:
Work done to raise the temperature from \[10^\circ \;C\] to \[100^\circ \;C\]at constant pressure \[W = n{C_p}\Delta T\]
Work done to raise the temperature from \[10^\circ \;C\] to \[100^\circ \;C\]at constant volume \[W = n{C_V}\Delta T\]
Since in both the cases the temperature is increasing by the same degree so change in internal energy for both the cases is the same.
Difference in work done if heating were at constant pressure and at constant volume is given by \[\Delta W\]
\[ \Rightarrow \Delta W = n{C_p}\Delta T - n{C_V}\Delta T\]
By simplifying the relation we get,
\[ \Rightarrow \Delta W = n({C_p} - {C_v})\Delta T\]
We know that \[({C_p} - {C_v}) = R\]
\[ \Rightarrow ({C_p} - {C_v}) = R\]
\[ \Rightarrow R = 8.314Jk{g^{ - 1}}{K^{ - 1}}\]
\[ \Rightarrow number\;of\;moles = \dfrac{{weight}}{{molar\;mass}}\]
Finding the numbers of moles of nitrogen in 3kg.
\[ \Rightarrow n = \dfrac{{3kg}}{{28gm}} = \dfrac{{3000gm}}{{28gm}} = 107.142moles\]
\[ \Rightarrow \Delta W = n({C_p} - {C_v})\Delta T\] \[\because ({C_p} - {C_v}) = R\] & \[R = 8.314Jk{g^{ - 1}}{K^{ - 1}}\]
Putting all the values we get,
\[ \Rightarrow \Delta W = 107.142(8.314).(100 - 10)\]
By solving this we get with
\[ \Rightarrow \Delta W \approx 81000J\]
Since , the difference in work done if heating were at constant pressure and at constant volume is \[81000J\].
Hence option (A) is the correct answer.
Note:- Work done to increase the temperature of gases at constant pressure is always greater than the work done to increase the temperature by the same amount of gases at constant volume.
However, in both the cases the temperature is increasing by the same degree so change in internal energy for both the cases is the same.
After finding all the differences by subtracting , this is the required answer.
Complete step-by-step solution:
Work done to raise the temperature from \[10^\circ \;C\] to \[100^\circ \;C\]at constant pressure \[W = n{C_p}\Delta T\]
Work done to raise the temperature from \[10^\circ \;C\] to \[100^\circ \;C\]at constant volume \[W = n{C_V}\Delta T\]
Since in both the cases the temperature is increasing by the same degree so change in internal energy for both the cases is the same.
Difference in work done if heating were at constant pressure and at constant volume is given by \[\Delta W\]
\[ \Rightarrow \Delta W = n{C_p}\Delta T - n{C_V}\Delta T\]
By simplifying the relation we get,
\[ \Rightarrow \Delta W = n({C_p} - {C_v})\Delta T\]
We know that \[({C_p} - {C_v}) = R\]
\[ \Rightarrow ({C_p} - {C_v}) = R\]
\[ \Rightarrow R = 8.314Jk{g^{ - 1}}{K^{ - 1}}\]
\[ \Rightarrow number\;of\;moles = \dfrac{{weight}}{{molar\;mass}}\]
Finding the numbers of moles of nitrogen in 3kg.
\[ \Rightarrow n = \dfrac{{3kg}}{{28gm}} = \dfrac{{3000gm}}{{28gm}} = 107.142moles\]
\[ \Rightarrow \Delta W = n({C_p} - {C_v})\Delta T\] \[\because ({C_p} - {C_v}) = R\] & \[R = 8.314Jk{g^{ - 1}}{K^{ - 1}}\]
Putting all the values we get,
\[ \Rightarrow \Delta W = 107.142(8.314).(100 - 10)\]
By solving this we get with
\[ \Rightarrow \Delta W \approx 81000J\]
Since , the difference in work done if heating were at constant pressure and at constant volume is \[81000J\].
Hence option (A) is the correct answer.
Note:- Work done to increase the temperature of gases at constant pressure is always greater than the work done to increase the temperature by the same amount of gases at constant volume.
However, in both the cases the temperature is increasing by the same degree so change in internal energy for both the cases is the same.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE