The temperature of a furnace is ${{2324}^{o}}C$ and the intensity is maximum in its spectrum nearly at nearly at $12000\overset{\text{o}}{\mathop{\text{A}}}\,$. If the intensity in the spectrum of star is maximum nearly at $4800\overset{\text{o}}{\mathop{\text{A}}}\,$, then the surface temperature of the star is:
(A). ${{8400}^{o}}C$
(B). ${{6219}^{o}}C$
(C). ${{7200}^{o}}C$
(D). ${{5900}^{o}}C$
Answer
Verified
442.8k+ views
Hint: A furnace being heated at a certain temperature and a star are considered as black bodies. Therefore, according to the Wien’s displacement law, the wavelength of maximum intensity for radiation at a particular temperature is inversely proportional to the temperature. Using this relation, we can calculate the temperature on the surface of a star.
Formulas used:
$\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Complete answer:
When a black- body is heated, it starts emitting radiation of different wavelengths at different temperatures.
According to the Wien’s displacement law, the wavelength maximum intensity of radiation emitted by a black body is inversely proportional to the temperature. This means for a particular temperature, as the wavelength increases, the intensity of the radiation decreases.
Therefore,
$\lambda \propto \dfrac{1}{T}$
Here, $\lambda $ is the wavelength of the radiation emitted
$T$ is the temperature
Therefore, from the above equation,
$\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}}$ - (1)
Given, let the temperature of a furnace equal to ${{2324}^{o}}C$ be ${{T}_{1}}$ and the temperature on the surface of a star be ${{T}_{2}}$. The wavelength of maximum intensity for furnace equal to $12000\overset{\text{o}}{\mathop{\text{A}}}\,$ be ${{\lambda }_{1}}$ and the wavelength of maximum intensity for spectrum of a star equal to $4800A$ be ${{\lambda }_{2}}$.
We substitute given values in eq (1) equation, to get,
$\begin{align}
& \dfrac{12000\times {{10}^{-10}}}{4800\times {{10}^{-10}}}=\dfrac{{{T}_{2}}}{(2324+273)} \\
& \Rightarrow {{T}_{2}}=\dfrac{10\times 2597}{4} \\
& \Rightarrow {{T}_{2}}=6492.5K \\
& \Rightarrow {{T}_{2}}=6492.5-273 \\
& \Rightarrow {{T}_{2}}={{6219.5}^{o}}C \\
& \therefore {{T}_{2}}\approx {{6219}^{o}}C \\
\end{align}$
The temperature of the surface of the star comes out to be ${{6220}^{o}}C$
Therefore, the temperature of the surface of the star is ${{6220}^{o}}C$.
Hence, the correct option is (B).
Note:
The star is often considered as a black body because the radiation given out is similar to a black body radiation. All those bodies which can absorb radiations along every wavelength are known as black bodies. For a black body to be in equilibrium, it must emit radiation at the same rate it absorbs it.
Formulas used:
$\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}}$
Complete answer:
When a black- body is heated, it starts emitting radiation of different wavelengths at different temperatures.
According to the Wien’s displacement law, the wavelength maximum intensity of radiation emitted by a black body is inversely proportional to the temperature. This means for a particular temperature, as the wavelength increases, the intensity of the radiation decreases.
Therefore,
$\lambda \propto \dfrac{1}{T}$
Here, $\lambda $ is the wavelength of the radiation emitted
$T$ is the temperature
Therefore, from the above equation,
$\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\dfrac{{{T}_{2}}}{{{T}_{1}}}$ - (1)
Given, let the temperature of a furnace equal to ${{2324}^{o}}C$ be ${{T}_{1}}$ and the temperature on the surface of a star be ${{T}_{2}}$. The wavelength of maximum intensity for furnace equal to $12000\overset{\text{o}}{\mathop{\text{A}}}\,$ be ${{\lambda }_{1}}$ and the wavelength of maximum intensity for spectrum of a star equal to $4800A$ be ${{\lambda }_{2}}$.
We substitute given values in eq (1) equation, to get,
$\begin{align}
& \dfrac{12000\times {{10}^{-10}}}{4800\times {{10}^{-10}}}=\dfrac{{{T}_{2}}}{(2324+273)} \\
& \Rightarrow {{T}_{2}}=\dfrac{10\times 2597}{4} \\
& \Rightarrow {{T}_{2}}=6492.5K \\
& \Rightarrow {{T}_{2}}=6492.5-273 \\
& \Rightarrow {{T}_{2}}={{6219.5}^{o}}C \\
& \therefore {{T}_{2}}\approx {{6219}^{o}}C \\
\end{align}$
The temperature of the surface of the star comes out to be ${{6220}^{o}}C$
Therefore, the temperature of the surface of the star is ${{6220}^{o}}C$.
Hence, the correct option is (B).
Note:
The star is often considered as a black body because the radiation given out is similar to a black body radiation. All those bodies which can absorb radiations along every wavelength are known as black bodies. For a black body to be in equilibrium, it must emit radiation at the same rate it absorbs it.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE