Answer
Verified
437.7k+ views
Hint: -Find the equivalent resistances for all the configurations in ${R_1},{R_2}$ and ${R_3}$. Now, by using the relation between power and resistance we will find the order of power in different configurations.
Complete Step by Step Solution: -
In the first configuration of ${R_1}$,
From this configuration, we can conclude that there is an equivalent wheatstone bridge circuit.
$\therefore \dfrac{{1\Omega }}{{1\Omega }} = \dfrac{{1\Omega }}{{1\Omega }} = 1\Omega $
Therefore, the equivalent resistance in the configuration ${R_1}$ is $1\Omega $.
Now, we have to calculate the equivalent resistance in the configuration ${R_2}$ -
From the above figure, the equivalent resistance can be calculated by –
\[
\Rightarrow {R_2} = {\left( {\dfrac{1}{{1 + 1}} + 1 + \dfrac{1}{{1 + 1}}} \right)^{ - 1}} \\
\therefore {R_2} = {2^{ - 1}} = 0.5\Omega \\
\]
Therefore, the equivalent resistance in the configuration ${R_2}$ is $0.5\Omega $.
Now, we have to calculate the equivalent resistance in the configuration ${R_3}$ -
From the above figure, the equivalent resistance for the configuration ${R_3}$ is –
$
\Rightarrow {R_3} = 1 + \dfrac{{\left( {1 + 1} \right)\left( {1 + 1} \right)}}{{\left( {1 + 1} \right) + \left( {1 + 1} \right)}} \\
\therefore {R_3} = 1 + 1 = 2\Omega \\
$
Therefore, the equivalent resistance in the configuration ${R_3}$ is $2\Omega $.
We know that, relationship between power, voltage and resistance is –
$ \Rightarrow P = \dfrac{{{V^2}}}{R}$
So, the power ${P_1}$ for configuration ${R_1}$ is –
$ \Rightarrow {P_1} = \dfrac{{{3^2}}}{1} = 9W$
Power ${P_2}$ for configuration ${R_2}$ is –
$
{P_2} = \dfrac{{{3^2}}}{{0.5}} = \dfrac{9}{{0.5}} \\
\therefore {P_2} = 18W \\
$
Power ${P_3}$ for configuration ${R_3}$ is –
\[
{P_3} = \dfrac{{{3^2}}}{2} = \dfrac{9}{2} \\
\therefore {P_3} = 4.5W \\
\]
Now, we have calculated the power for each configuration for ${R_1},{R_2}$ and ${R_3}$ which are –
$
\Rightarrow {P_1} = 9W \\
\Rightarrow {P_2} = 18W \\
\Rightarrow {P_3} = 4.5W \\
$
Therefore, we can conclude that –
${P_2} > {P_1} > {P_3}$
Hence, the correct option is (C).
Note: -Wheatstone bridge is the circuit which is connected in form of the bridge and is composed of two known resistors, one unknown resistor and one variable resistor connected in the form of a bridge. This bridge gives accurate measurements, so it is most reliable. This bridge is used for the precise measurement of low resistance and is also used to measure inductance, capacitance and impedance by using the variations.
Complete Step by Step Solution: -
In the first configuration of ${R_1}$,
From this configuration, we can conclude that there is an equivalent wheatstone bridge circuit.
$\therefore \dfrac{{1\Omega }}{{1\Omega }} = \dfrac{{1\Omega }}{{1\Omega }} = 1\Omega $
Therefore, the equivalent resistance in the configuration ${R_1}$ is $1\Omega $.
Now, we have to calculate the equivalent resistance in the configuration ${R_2}$ -
From the above figure, the equivalent resistance can be calculated by –
\[
\Rightarrow {R_2} = {\left( {\dfrac{1}{{1 + 1}} + 1 + \dfrac{1}{{1 + 1}}} \right)^{ - 1}} \\
\therefore {R_2} = {2^{ - 1}} = 0.5\Omega \\
\]
Therefore, the equivalent resistance in the configuration ${R_2}$ is $0.5\Omega $.
Now, we have to calculate the equivalent resistance in the configuration ${R_3}$ -
From the above figure, the equivalent resistance for the configuration ${R_3}$ is –
$
\Rightarrow {R_3} = 1 + \dfrac{{\left( {1 + 1} \right)\left( {1 + 1} \right)}}{{\left( {1 + 1} \right) + \left( {1 + 1} \right)}} \\
\therefore {R_3} = 1 + 1 = 2\Omega \\
$
Therefore, the equivalent resistance in the configuration ${R_3}$ is $2\Omega $.
We know that, relationship between power, voltage and resistance is –
$ \Rightarrow P = \dfrac{{{V^2}}}{R}$
So, the power ${P_1}$ for configuration ${R_1}$ is –
$ \Rightarrow {P_1} = \dfrac{{{3^2}}}{1} = 9W$
Power ${P_2}$ for configuration ${R_2}$ is –
$
{P_2} = \dfrac{{{3^2}}}{{0.5}} = \dfrac{9}{{0.5}} \\
\therefore {P_2} = 18W \\
$
Power ${P_3}$ for configuration ${R_3}$ is –
\[
{P_3} = \dfrac{{{3^2}}}{2} = \dfrac{9}{2} \\
\therefore {P_3} = 4.5W \\
\]
Now, we have calculated the power for each configuration for ${R_1},{R_2}$ and ${R_3}$ which are –
$
\Rightarrow {P_1} = 9W \\
\Rightarrow {P_2} = 18W \\
\Rightarrow {P_3} = 4.5W \\
$
Therefore, we can conclude that –
${P_2} > {P_1} > {P_3}$
Hence, the correct option is (C).
Note: -Wheatstone bridge is the circuit which is connected in form of the bridge and is composed of two known resistors, one unknown resistor and one variable resistor connected in the form of a bridge. This bridge gives accurate measurements, so it is most reliable. This bridge is used for the precise measurement of low resistance and is also used to measure inductance, capacitance and impedance by using the variations.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE