Answer
Verified
472.5k+ views
Hint: First of all, form the cubic polynomial with the given roots. then use the formula if a polynomial \[f\left( x \right)\] has a remainder of \[r\] when divided by \[x - \alpha \] when \[f\left( \alpha \right) = r\] to find the required value of \[k\]. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given that \[f\left( x \right)\] is a polynomial of degree three and its roots are \[3, - 3\] and \[ - k\].
Also given that \[f\left( x \right)\] has a remainder of 8 when divided by \[x + 1\].
We know that the equation of the cubic polynomial \[f\left( x \right)\] with roots \[\alpha ,\beta ,\gamma \] is given by \[f\left( x \right) = \left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right) = 0\].
So, the given cubic polynomial \[f\left( x \right)\] with roots \[3, - 3\] and \[ - k\] is
\[
\Rightarrow f\left( x \right) = \left( {x - 3} \right)\left( {x - \left( { - 3} \right)} \right)\left( {x - \left( { - k} \right)} \right) \\
\Rightarrow f\left( x \right) = \left( {x - 3} \right)\left( {x + 3} \right)\left( {x + k} \right) \\
\Rightarrow f\left( x \right) = \left( {{x^2} - 9} \right)\left( {x + k} \right) \\
\]
Also given that \[f\left( x \right)\] has a remainder of 8 when divided by \[x + 1\].
We know that if a polynomial \[f\left( x \right)\] has a remainder of \[r\] when divided by \[x - \alpha \] when \[f\left( \alpha \right) = r\]
Since \[f\left( x \right)\] has a remainder of 8 when divided by \[x + 1\], we have
\[
\Rightarrow f\left( { - 1} \right) = 8 \\
\Rightarrow \left( {{{\left( { - 1} \right)}^2} - 9} \right)\left( { - 1 + k} \right) = 8 \\
\Rightarrow \left( {1 - 9} \right)\left( { - 1 + k} \right) = 8 \\
\Rightarrow - 8\left( {k - 1} \right) = 8 \\
\Rightarrow k - 1 = \dfrac{8}{{ - 8}} = - 1 \\
\therefore k = - 1 + 1 = 0 \\
\]
Thus, the value of \[k\] is 0.
Note: A cubic polynomial is a polynomial of degree 3. A cubic polynomial is of the form \[a{x^3} + b{x^2} + cx + d\]. An equation involving a cubic polynomial is called as a cubic equation. A cubic equation is of the form \[a{x^3} + b{x^2} + cx + d = 0\].
Complete step-by-step answer:
Given that \[f\left( x \right)\] is a polynomial of degree three and its roots are \[3, - 3\] and \[ - k\].
Also given that \[f\left( x \right)\] has a remainder of 8 when divided by \[x + 1\].
We know that the equation of the cubic polynomial \[f\left( x \right)\] with roots \[\alpha ,\beta ,\gamma \] is given by \[f\left( x \right) = \left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right) = 0\].
So, the given cubic polynomial \[f\left( x \right)\] with roots \[3, - 3\] and \[ - k\] is
\[
\Rightarrow f\left( x \right) = \left( {x - 3} \right)\left( {x - \left( { - 3} \right)} \right)\left( {x - \left( { - k} \right)} \right) \\
\Rightarrow f\left( x \right) = \left( {x - 3} \right)\left( {x + 3} \right)\left( {x + k} \right) \\
\Rightarrow f\left( x \right) = \left( {{x^2} - 9} \right)\left( {x + k} \right) \\
\]
Also given that \[f\left( x \right)\] has a remainder of 8 when divided by \[x + 1\].
We know that if a polynomial \[f\left( x \right)\] has a remainder of \[r\] when divided by \[x - \alpha \] when \[f\left( \alpha \right) = r\]
Since \[f\left( x \right)\] has a remainder of 8 when divided by \[x + 1\], we have
\[
\Rightarrow f\left( { - 1} \right) = 8 \\
\Rightarrow \left( {{{\left( { - 1} \right)}^2} - 9} \right)\left( { - 1 + k} \right) = 8 \\
\Rightarrow \left( {1 - 9} \right)\left( { - 1 + k} \right) = 8 \\
\Rightarrow - 8\left( {k - 1} \right) = 8 \\
\Rightarrow k - 1 = \dfrac{8}{{ - 8}} = - 1 \\
\therefore k = - 1 + 1 = 0 \\
\]
Thus, the value of \[k\] is 0.
Note: A cubic polynomial is a polynomial of degree 3. A cubic polynomial is of the form \[a{x^3} + b{x^2} + cx + d\]. An equation involving a cubic polynomial is called as a cubic equation. A cubic equation is of the form \[a{x^3} + b{x^2} + cx + d = 0\].
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE