Answer
Verified
446.4k+ views
Hint: In the given question, change the force-time curve into the acceleration-time curve since acceleration is the change in velocity of time by using newton’s second law of motion. Newton’s second law of motion states the acceleration of an object produced by a net force is proportional to the mass of that object. For the result, we need to find the area under the acceleration-time curve.
Complete step by step answer:
Given the mass of the rocket is 1200 grams and from the figure, it can be observed that the maximum force is 20 newton. From the newton’s second law of motion, we can write, \[F = ma\]
Substitute 1200 grams (or 1200/1000 kilograms) for mass and 20 newtons for the force in the formula \[F = ma\] to determine the acceleration of the rocket.
\[
F = ma \\
a = \dfrac{F}{m} \\
= \dfrac{{20}}{{\left( {\dfrac{{1200}}{{1000}}} \right)}} \\
= \dfrac{{20}}{{1.2}} \\
= \dfrac{{50}}{3} \\
\]
Now we can draw acceleration time graph as
Now the area in the acceleration-time graph changes with velocity hence we can say
Change in velocity= area under the graph which equals to the area of the rectangle and two areas of the triangles.
$`
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times \left( {10 - 2} \right)} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times \left( {16 - 10} \right)} \right) \\
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times 8} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 6} \right) \\
\implies v - u = \dfrac{{50}}{3}\left[ {1 + 8 + 3} \right] \\
\implies v - u = \dfrac{{50}}{3} \times 12 \\
\implies v - u = 50 \times 4 \\
\implies v - u = 200{\text{ m/sec}} \\
$
Since the objects start from rest so we can say \[u = 0\]
Hence the velocity of the rocket will be
\[
v - 0 = 200{\text{ m/sec}} \\
v = 200{\text{ m/sec}} \\
\]
Therefore the velocity of the rocket after 16 seconds starting from rest is \[200{\text{ m/sec}}\].
So, the correct answer is “Option D”.
Note:
As we know the area under a curve is the same as the definite integral between two fixed points hence we can also use the method of integration to find the change in momentum. Moreover, the given curve is between thrust (force) and the time but we need the velocity which can be determined by the acceleration-time curve, so it should be transformed accordingly.
Complete step by step answer:
Given the mass of the rocket is 1200 grams and from the figure, it can be observed that the maximum force is 20 newton. From the newton’s second law of motion, we can write, \[F = ma\]
Substitute 1200 grams (or 1200/1000 kilograms) for mass and 20 newtons for the force in the formula \[F = ma\] to determine the acceleration of the rocket.
\[
F = ma \\
a = \dfrac{F}{m} \\
= \dfrac{{20}}{{\left( {\dfrac{{1200}}{{1000}}} \right)}} \\
= \dfrac{{20}}{{1.2}} \\
= \dfrac{{50}}{3} \\
\]
Now we can draw acceleration time graph as
Now the area in the acceleration-time graph changes with velocity hence we can say
Change in velocity= area under the graph which equals to the area of the rectangle and two areas of the triangles.
$`
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times \left( {10 - 2} \right)} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times \left( {16 - 10} \right)} \right) \\
v - u = \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 2} \right) + \left( {\dfrac{{50}}{3} \times 8} \right) + \left( {\dfrac{1}{2} \times \dfrac{{50}}{3} \times 6} \right) \\
\implies v - u = \dfrac{{50}}{3}\left[ {1 + 8 + 3} \right] \\
\implies v - u = \dfrac{{50}}{3} \times 12 \\
\implies v - u = 50 \times 4 \\
\implies v - u = 200{\text{ m/sec}} \\
$
Since the objects start from rest so we can say \[u = 0\]
Hence the velocity of the rocket will be
\[
v - 0 = 200{\text{ m/sec}} \\
v = 200{\text{ m/sec}} \\
\]
Therefore the velocity of the rocket after 16 seconds starting from rest is \[200{\text{ m/sec}}\].
So, the correct answer is “Option D”.
Note:
As we know the area under a curve is the same as the definite integral between two fixed points hence we can also use the method of integration to find the change in momentum. Moreover, the given curve is between thrust (force) and the time but we need the velocity which can be determined by the acceleration-time curve, so it should be transformed accordingly.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE