![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The total number of turns and cross section area in a solenoid is fixed. However, its length $L$ is varied by adjusting the separation between windings. The inductance of the solenoid will be proportional to:
(A). $\dfrac{1}{{{L}^{2}}}$
(B). $\dfrac{1}{L}$
(C). $L$
(D). ${{L}^{2}}$
Answer
443.1k+ views
Hint: The inductance is the property of a conductor by virtue of which it opposes the change in current. The flux associated with a conductor is directly proportional to the change in current. Flux also depends on the magnetic field and the area of the cross section of a conductor. Using the different relations, we can calculate the inductance of a conductor.
Formulas used:
$\phi =L'I$
$\phi =NBA$
$\Rightarrow L'=\dfrac{NBA}{I}$
Complete answer:
A coil opposes the change in current through it by virtue of a property known as inductance. The inductance is given by
$\phi =L'I$ - (1)
Here, $\phi $ is the flux passing through the coil
$L'$ is the inductance of the coil
$I$ is the current
$\phi =NBA$ - (2)
From eq (1) and eq (2), we get,
$L'I=NBA$
$\Rightarrow L'=\dfrac{NBA}{I}$ - (3)
Here, $N$ is the total number of turns in the solenoid
$A$ is the area of cross section
$I$ is the current through the solenoid
The solenoid has a magnetic field given by-
$B={{\mu }_{0}}nI$ - (4)
And the area is $A=\pi {{R}^{2}}$ - (5)
Here,
${{\mu }_{0}}$ is the permittivity of free space
$n$ is the number of turns per unit length
$I$ is the current
We substitute eq (4) and eq (5) in eq (3), we get,
$L'=\dfrac{N{{\mu }_{0}}nI\pi {{R}^{2}}}{I}$
Let the length of the solenoid be $L$. We know that, $n=\dfrac{N}{L}$ therefore,
$L'=\dfrac{{{N}^{2}}{{\mu }_{0}}\pi {{R}^{2}}}{L}$ - (6)
From the given situation, the length is variable and is changed by changing the separation between the windings.
From eq (6), the inductance of the solenoid is directly proportional to the inverse of length.
Therefore, the inductance of the solenoid is $L'=\dfrac{{{N}^{2}}{{\mu }_{0}}\pi {{R}^{2}}}{L}$ and is inversely proportional to the length.
Hence, the correct option is (B).
Note:
The change in current through a circuit results in the change in flux associated with the circuit due to which a potential is developed. The inductor is a device which opposes the change in current. The inductance of a solenoid depends on its physical properties.
Formulas used:
$\phi =L'I$
$\phi =NBA$
$\Rightarrow L'=\dfrac{NBA}{I}$
Complete answer:
A coil opposes the change in current through it by virtue of a property known as inductance. The inductance is given by
$\phi =L'I$ - (1)
Here, $\phi $ is the flux passing through the coil
$L'$ is the inductance of the coil
$I$ is the current
$\phi =NBA$ - (2)
From eq (1) and eq (2), we get,
$L'I=NBA$
$\Rightarrow L'=\dfrac{NBA}{I}$ - (3)
Here, $N$ is the total number of turns in the solenoid
$A$ is the area of cross section
$I$ is the current through the solenoid
The solenoid has a magnetic field given by-
$B={{\mu }_{0}}nI$ - (4)
And the area is $A=\pi {{R}^{2}}$ - (5)
Here,
${{\mu }_{0}}$ is the permittivity of free space
$n$ is the number of turns per unit length
$I$ is the current
We substitute eq (4) and eq (5) in eq (3), we get,
$L'=\dfrac{N{{\mu }_{0}}nI\pi {{R}^{2}}}{I}$
Let the length of the solenoid be $L$. We know that, $n=\dfrac{N}{L}$ therefore,
$L'=\dfrac{{{N}^{2}}{{\mu }_{0}}\pi {{R}^{2}}}{L}$ - (6)
From the given situation, the length is variable and is changed by changing the separation between the windings.
From eq (6), the inductance of the solenoid is directly proportional to the inverse of length.
Therefore, the inductance of the solenoid is $L'=\dfrac{{{N}^{2}}{{\mu }_{0}}\pi {{R}^{2}}}{L}$ and is inversely proportional to the length.
Hence, the correct option is (B).
Note:
The change in current through a circuit results in the change in flux associated with the circuit due to which a potential is developed. The inductor is a device which opposes the change in current. The inductance of a solenoid depends on its physical properties.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)