The triple product \[\left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\vec b \times \left( {\vec c \times \vec d} \right)} \right)} \right]\] simplifies to
A.\[\left( {\vec b\vec d} \right)\left[ {\vec d\vec a\vec c} \right]\]
B.\[\left( {\vec b\vec c} \right)\left[ {\vec a\vec b\vec d} \right]\]
C.\[\left( {\vec b\vec a} \right)\left[ {\vec a\vec b\vec d} \right]\]
D.None of these
Answer
Verified
473.1k+ views
Hint: Here, we will rewrite the given equation using the cross product rule, \[a \times \left( {b \times c} \right) = \left( {a \cdot c} \right)b - \left( {a \cdot b} \right)c\] and then simplify it. Then we will use that if in a scalar triple product, two same variables are there, then the value of products is 0 to find the required value.
Complete step-by-step answer:
We are given that \[\left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\vec b \times \left( {\vec c \times \vec d} \right)} \right)} \right]\].
Rewriting the given equation using the cross product rule, \[a \times \left( {b \times c} \right) = \left( {a \cdot c} \right)b - \left( {a \cdot b} \right)c\], we get
\[ \Rightarrow \left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\left( {\vec b \cdot \vec d} \right)\vec c - \left( {\vec b \cdot \vec c} \right)\vec d} \right)} \right]\]
Simplifying the above equation by open the open brackets, we get
\[
\Rightarrow \left( {\vec d + \vec a} \right)\left[ {\left( {\vec b \cdot \vec d} \right)\left( {\vec a \times \vec c} \right) - \left( {\vec b \cdot \vec c} \right)\left( {\vec a \times \vec d} \right)} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + \vec a \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot \vec d \cdot \vec d + \vec a \cdot \vec a \cdot \vec d} \right] \\
\]
We know that if in a scalar triple product, two same variables are there, then the value of products is 0.
So, the above expression becomes
\[
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0 \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot 0 + 0 \cdot \vec d} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {0 + 0} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left( 0 \right) \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - 0 \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] \\
\]
Hence, option A is correct.
Note: We know that a dot product is the product between components in parallel and cross product is the product between components in perpendicular. These are because of the orthogonal direction in a product only one of the two components (parallel & perpendicular) takes part. The knowledge of both the products of vectors is really important in this question.
Complete step-by-step answer:
We are given that \[\left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\vec b \times \left( {\vec c \times \vec d} \right)} \right)} \right]\].
Rewriting the given equation using the cross product rule, \[a \times \left( {b \times c} \right) = \left( {a \cdot c} \right)b - \left( {a \cdot b} \right)c\], we get
\[ \Rightarrow \left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\left( {\vec b \cdot \vec d} \right)\vec c - \left( {\vec b \cdot \vec c} \right)\vec d} \right)} \right]\]
Simplifying the above equation by open the open brackets, we get
\[
\Rightarrow \left( {\vec d + \vec a} \right)\left[ {\left( {\vec b \cdot \vec d} \right)\left( {\vec a \times \vec c} \right) - \left( {\vec b \cdot \vec c} \right)\left( {\vec a \times \vec d} \right)} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + \vec a \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot \vec d \cdot \vec d + \vec a \cdot \vec a \cdot \vec d} \right] \\
\]
We know that if in a scalar triple product, two same variables are there, then the value of products is 0.
So, the above expression becomes
\[
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0 \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot 0 + 0 \cdot \vec d} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {0 + 0} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left( 0 \right) \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - 0 \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] \\
\]
Hence, option A is correct.
Note: We know that a dot product is the product between components in parallel and cross product is the product between components in perpendicular. These are because of the orthogonal direction in a product only one of the two components (parallel & perpendicular) takes part. The knowledge of both the products of vectors is really important in this question.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE