Answer
Verified
500.4k+ views
Hint: The intersection point satisfies both the equations of conic sections.
We are given the equations of two parabolas
${x^2} = 4y{\text{ (1)}}$
${y^2} = 4x{\text{ (2)}}$
We need to find the intersection point of the two parabolas other than the origin.
If the two parabolas intersect, above two equations should have common solutions.
Using equation (1) in equation (2), we get,
$
{\left( {\dfrac{{{x^2}}}{4}} \right)^2} = 4x \\
\Rightarrow {x^4} - 64x = 0 \\
\Rightarrow x\left( {{x^3} - {4^3}} \right) = 0 \\
$
Using identity ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ in the above equation
$
\Rightarrow x\left( {x - 4} \right)\left( {{x^2} + 16 + 4x} \right) = 0 \\
\Rightarrow x = 0,x = 4,\left( {{x^2} + 16 + 4x} \right) = 0 \\
$
We neglect $\left( {{x^2} + 16 + 4x} \right) = 0$ as the roots of this equation are imaginary
Using $x = 4$ in equation (2), we get $y = 4, - 4$
Similarly, by using x=0 in equation (2), we get $y = 0$ which is the point of intersection already stated in the problem.
Now we need to check for the two obtained points, that is, $x = 4,y = 4$ and $x = 4,y = - 4$ for satisfaction of equation of (1)
Using $x = 4,y = - 4$ in equation (1), we get
$
{4^2} = 4 \times \left( { - 4} \right) \\
\Rightarrow LHS \ne RHS \\
$
Therefore point $x = 4,y = - 4$ is neglected as it does not satisfy equation (1)
Using $x = 4,y = 4$ in equation (1), we get
$
{4^2} = 4 \times \left( 4 \right) \\
\Rightarrow LHS = RHS \\
$
Since point $x = 4,y = 4$ satisfies both equation (1) and (2), $\left( {4,4} \right)$ is the other point of intersection of the above given parabolas.
Hence option C. $\left( {4,4} \right)$ is correct.
Note: Only real solutions are needed to be considered for the intersection of two conical sections. Also, it is advised to draw the figures in order to get an idea of points of intersection in order to solve the question in less time.
We are given the equations of two parabolas
${x^2} = 4y{\text{ (1)}}$
${y^2} = 4x{\text{ (2)}}$
We need to find the intersection point of the two parabolas other than the origin.
If the two parabolas intersect, above two equations should have common solutions.
Using equation (1) in equation (2), we get,
$
{\left( {\dfrac{{{x^2}}}{4}} \right)^2} = 4x \\
\Rightarrow {x^4} - 64x = 0 \\
\Rightarrow x\left( {{x^3} - {4^3}} \right) = 0 \\
$
Using identity ${a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$ in the above equation
$
\Rightarrow x\left( {x - 4} \right)\left( {{x^2} + 16 + 4x} \right) = 0 \\
\Rightarrow x = 0,x = 4,\left( {{x^2} + 16 + 4x} \right) = 0 \\
$
We neglect $\left( {{x^2} + 16 + 4x} \right) = 0$ as the roots of this equation are imaginary
Using $x = 4$ in equation (2), we get $y = 4, - 4$
Similarly, by using x=0 in equation (2), we get $y = 0$ which is the point of intersection already stated in the problem.
Now we need to check for the two obtained points, that is, $x = 4,y = 4$ and $x = 4,y = - 4$ for satisfaction of equation of (1)
Using $x = 4,y = - 4$ in equation (1), we get
$
{4^2} = 4 \times \left( { - 4} \right) \\
\Rightarrow LHS \ne RHS \\
$
Therefore point $x = 4,y = - 4$ is neglected as it does not satisfy equation (1)
Using $x = 4,y = 4$ in equation (1), we get
$
{4^2} = 4 \times \left( 4 \right) \\
\Rightarrow LHS = RHS \\
$
Since point $x = 4,y = 4$ satisfies both equation (1) and (2), $\left( {4,4} \right)$ is the other point of intersection of the above given parabolas.
Hence option C. $\left( {4,4} \right)$ is correct.
Note: Only real solutions are needed to be considered for the intersection of two conical sections. Also, it is advised to draw the figures in order to get an idea of points of intersection in order to solve the question in less time.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers