Answer
Verified
447.9k+ views
Hint Electric field is directly proportional to charge and inversely proportional to distance to the square of the distance from the charge. It has a constant of proportionality that is inversely related to the permittivity.
Formula used: $ E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per coulomb.
Complete step by step answer
In general, the permittivity of free space is a measure of the resistance of vacuum to the effect of electric field. Permittivity also exists for other materials or medium electric field can be felt or propagated. In summary, the higher the permittivity of the medium the lower the electric field effect for the same charge and distance considered from charge.
To find the unit of permittivity we can use the formula for the electric field and make $ {\varepsilon _0} $ subject of the formula. Then work with the variables’ unit to reveal the unit of $ {\varepsilon _0} $ .
The expression for electric field is given as
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per Coulomb.
Making $ {\varepsilon _0} $ subject of the formula, by multiplying both sides by $ {\varepsilon _0} $ and dividing both sides by $ E $ , we have that
$\Rightarrow {\varepsilon _0} = \dfrac{1}{{4\pi E}}\dfrac{Q}{{{r^2}}} $ . Therefore, the unit of $\Rightarrow {\varepsilon _0} $ will be given as the unit of the right hand side of the equation.
Hence, replacing each variable with its unit, we have that,
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = C \div \left( {\dfrac{N}{C} \times {m^2}} \right) $ (since $ 4\pi $ is a dimensionless constant), where $ {\varepsilon _{0U}} $ is the unit of $ {\varepsilon _0} $ .
Evaluating the right hand side (by converting the division to multiplication) we have
$\Rightarrow {\varepsilon _{0U}} = C \times \left( {\dfrac{C}{{N{m^2}}}} \right) = {C^2}{N^{ - 1}}{m^{ - 2}} $
$ \therefore {\varepsilon _{0U}} = {C^2}{N^{ - 1}}{m^{ - 2}} $
Hence, the correct option is D.
Note
Alternatively, to find the unit of $ {\varepsilon _0} $ , any formula containing $ {\varepsilon _0} $ can be utilized in as much as the units of the other variables are well known. For example, Using Gauss’s law, I can obtain the unit of $ {\varepsilon _0} $ as follows:
, we can drop the integral signs and vector symbols since they don’t affect our unit. Hence, we have
$\Rightarrow E \times A = \dfrac{Q}{{{\varepsilon _0}}} $
$\Rightarrow {\varepsilon _0} = \dfrac{Q}{{EA}} $
The unit of $ {\varepsilon _0} $ again can then be calculated as
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = {C^2}{N^{ - 1}}{m^{ - 2}} $ which is an identical expression as the one calculated in the solution step. It is best to directly use expressions whose variables have SI units contained in the options.
Formula used: $ E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per coulomb.
Complete step by step answer
In general, the permittivity of free space is a measure of the resistance of vacuum to the effect of electric field. Permittivity also exists for other materials or medium electric field can be felt or propagated. In summary, the higher the permittivity of the medium the lower the electric field effect for the same charge and distance considered from charge.
To find the unit of permittivity we can use the formula for the electric field and make $ {\varepsilon _0} $ subject of the formula. Then work with the variables’ unit to reveal the unit of $ {\varepsilon _0} $ .
The expression for electric field is given as
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per Coulomb.
Making $ {\varepsilon _0} $ subject of the formula, by multiplying both sides by $ {\varepsilon _0} $ and dividing both sides by $ E $ , we have that
$\Rightarrow {\varepsilon _0} = \dfrac{1}{{4\pi E}}\dfrac{Q}{{{r^2}}} $ . Therefore, the unit of $\Rightarrow {\varepsilon _0} $ will be given as the unit of the right hand side of the equation.
Hence, replacing each variable with its unit, we have that,
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = C \div \left( {\dfrac{N}{C} \times {m^2}} \right) $ (since $ 4\pi $ is a dimensionless constant), where $ {\varepsilon _{0U}} $ is the unit of $ {\varepsilon _0} $ .
Evaluating the right hand side (by converting the division to multiplication) we have
$\Rightarrow {\varepsilon _{0U}} = C \times \left( {\dfrac{C}{{N{m^2}}}} \right) = {C^2}{N^{ - 1}}{m^{ - 2}} $
$ \therefore {\varepsilon _{0U}} = {C^2}{N^{ - 1}}{m^{ - 2}} $
Hence, the correct option is D.
Note
Alternatively, to find the unit of $ {\varepsilon _0} $ , any formula containing $ {\varepsilon _0} $ can be utilized in as much as the units of the other variables are well known. For example, Using Gauss’s law, I can obtain the unit of $ {\varepsilon _0} $ as follows:
, we can drop the integral signs and vector symbols since they don’t affect our unit. Hence, we have
$\Rightarrow E \times A = \dfrac{Q}{{{\varepsilon _0}}} $
$\Rightarrow {\varepsilon _0} = \dfrac{Q}{{EA}} $
The unit of $ {\varepsilon _0} $ again can then be calculated as
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = {C^2}{N^{ - 1}}{m^{ - 2}} $ which is an identical expression as the one calculated in the solution step. It is best to directly use expressions whose variables have SI units contained in the options.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE