Answer
Verified
438.6k+ views
Hint Electric field is directly proportional to charge and inversely proportional to distance to the square of the distance from the charge. It has a constant of proportionality that is inversely related to the permittivity.
Formula used: $ E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per coulomb.
Complete step by step answer
In general, the permittivity of free space is a measure of the resistance of vacuum to the effect of electric field. Permittivity also exists for other materials or medium electric field can be felt or propagated. In summary, the higher the permittivity of the medium the lower the electric field effect for the same charge and distance considered from charge.
To find the unit of permittivity we can use the formula for the electric field and make $ {\varepsilon _0} $ subject of the formula. Then work with the variables’ unit to reveal the unit of $ {\varepsilon _0} $ .
The expression for electric field is given as
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per Coulomb.
Making $ {\varepsilon _0} $ subject of the formula, by multiplying both sides by $ {\varepsilon _0} $ and dividing both sides by $ E $ , we have that
$\Rightarrow {\varepsilon _0} = \dfrac{1}{{4\pi E}}\dfrac{Q}{{{r^2}}} $ . Therefore, the unit of $\Rightarrow {\varepsilon _0} $ will be given as the unit of the right hand side of the equation.
Hence, replacing each variable with its unit, we have that,
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = C \div \left( {\dfrac{N}{C} \times {m^2}} \right) $ (since $ 4\pi $ is a dimensionless constant), where $ {\varepsilon _{0U}} $ is the unit of $ {\varepsilon _0} $ .
Evaluating the right hand side (by converting the division to multiplication) we have
$\Rightarrow {\varepsilon _{0U}} = C \times \left( {\dfrac{C}{{N{m^2}}}} \right) = {C^2}{N^{ - 1}}{m^{ - 2}} $
$ \therefore {\varepsilon _{0U}} = {C^2}{N^{ - 1}}{m^{ - 2}} $
Hence, the correct option is D.
Note
Alternatively, to find the unit of $ {\varepsilon _0} $ , any formula containing $ {\varepsilon _0} $ can be utilized in as much as the units of the other variables are well known. For example, Using Gauss’s law, I can obtain the unit of $ {\varepsilon _0} $ as follows:
, we can drop the integral signs and vector symbols since they don’t affect our unit. Hence, we have
$\Rightarrow E \times A = \dfrac{Q}{{{\varepsilon _0}}} $
$\Rightarrow {\varepsilon _0} = \dfrac{Q}{{EA}} $
The unit of $ {\varepsilon _0} $ again can then be calculated as
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = {C^2}{N^{ - 1}}{m^{ - 2}} $ which is an identical expression as the one calculated in the solution step. It is best to directly use expressions whose variables have SI units contained in the options.
Formula used: $ E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per coulomb.
Complete step by step answer
In general, the permittivity of free space is a measure of the resistance of vacuum to the effect of electric field. Permittivity also exists for other materials or medium electric field can be felt or propagated. In summary, the higher the permittivity of the medium the lower the electric field effect for the same charge and distance considered from charge.
To find the unit of permittivity we can use the formula for the electric field and make $ {\varepsilon _0} $ subject of the formula. Then work with the variables’ unit to reveal the unit of $ {\varepsilon _0} $ .
The expression for electric field is given as
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{Q}{{{r^2}}} $ where $ Q $ is charge measured in coulombs, $ r $ is distance measured in meters, and $ E $ is electric field measured in Newton per Coulomb.
Making $ {\varepsilon _0} $ subject of the formula, by multiplying both sides by $ {\varepsilon _0} $ and dividing both sides by $ E $ , we have that
$\Rightarrow {\varepsilon _0} = \dfrac{1}{{4\pi E}}\dfrac{Q}{{{r^2}}} $ . Therefore, the unit of $\Rightarrow {\varepsilon _0} $ will be given as the unit of the right hand side of the equation.
Hence, replacing each variable with its unit, we have that,
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = C \div \left( {\dfrac{N}{C} \times {m^2}} \right) $ (since $ 4\pi $ is a dimensionless constant), where $ {\varepsilon _{0U}} $ is the unit of $ {\varepsilon _0} $ .
Evaluating the right hand side (by converting the division to multiplication) we have
$\Rightarrow {\varepsilon _{0U}} = C \times \left( {\dfrac{C}{{N{m^2}}}} \right) = {C^2}{N^{ - 1}}{m^{ - 2}} $
$ \therefore {\varepsilon _{0U}} = {C^2}{N^{ - 1}}{m^{ - 2}} $
Hence, the correct option is D.
Note
Alternatively, to find the unit of $ {\varepsilon _0} $ , any formula containing $ {\varepsilon _0} $ can be utilized in as much as the units of the other variables are well known. For example, Using Gauss’s law, I can obtain the unit of $ {\varepsilon _0} $ as follows:
, we can drop the integral signs and vector symbols since they don’t affect our unit. Hence, we have
$\Rightarrow E \times A = \dfrac{Q}{{{\varepsilon _0}}} $
$\Rightarrow {\varepsilon _0} = \dfrac{Q}{{EA}} $
The unit of $ {\varepsilon _0} $ again can then be calculated as
$\Rightarrow {\varepsilon _{0U}} = \dfrac{C}{{\dfrac{N}{C} \times {m^2}}} = {C^2}{N^{ - 1}}{m^{ - 2}} $ which is an identical expression as the one calculated in the solution step. It is best to directly use expressions whose variables have SI units contained in the options.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE