Answer
Verified
469.2k+ views
Hint: Using Newton’s law of gravitation find the equation of gravitational constant and acceleration due to gravity. And according to the formula use the relation between acceleration due ro gravity and radius.
Formula used:
$ g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
Complete step-by-step answer:
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is $ { R }_{ E }$, then by Newton’s law of gravitation we get,
$ F=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$ …(1)
where, G: Gravitational Constant
Now, from Newton’s Second law of motion,
$ F=\quad mg$ …(2)
where, g: Acceleration due to gravity
From eq.(1) and eq.(2) we get,
$ mg=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$
$ \therefore \quad g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
So from the above equation, we can say the value of acceleration due to gravity is least at the maximum radius. Radius is maximum at the equator which means acceleration due to gravity is least at equator.
So, the correct answer is “Option C”.
Note:
As the radius increases acceleration due to gravity decreases. And similarly as the height from the surface of earth increases, acceleration due to gravity decreases. This is given by equation,
$g=\quad G\dfrac { M }{ { ({ R }_{ E }+h) }^{ 2 } } $
where, h: height from the surface of earth
Formula used:
$ g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
Complete step-by-step answer:
Equation of gravitational constant and acceleration due to gravity can be calculated as shown below:
Suppose, a body of mass m is placed on the surface of earth and assumes the shape of the earth to be round. If mass of the earth is M and radius of earth is $ { R }_{ E }$, then by Newton’s law of gravitation we get,
$ F=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$ …(1)
where, G: Gravitational Constant
Now, from Newton’s Second law of motion,
$ F=\quad mg$ …(2)
where, g: Acceleration due to gravity
From eq.(1) and eq.(2) we get,
$ mg=\quad G\dfrac { Mm }{ { R }_{ E }^{ 2 } }$
$ \therefore \quad g=\quad G\dfrac { M }{ { R }_{ E }^{ 2 } }$
So from the above equation, we can say the value of acceleration due to gravity is least at the maximum radius. Radius is maximum at the equator which means acceleration due to gravity is least at equator.
So, the correct answer is “Option C”.
Note:
As the radius increases acceleration due to gravity decreases. And similarly as the height from the surface of earth increases, acceleration due to gravity decreases. This is given by equation,
$g=\quad G\dfrac { M }{ { ({ R }_{ E }+h) }^{ 2 } } $
where, h: height from the surface of earth
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE