Answer
Verified
466.2k+ views
Hint: Use the conditions of Lagrange’s Theorem according to which if a function f is continuous in the interval [a,b] and is differentiable in the interval (a,b) then there exists at least one c lying in the interval (a,b) such that $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ . Also, the function given to us is a polynomial and polynomials are continuous and differentiable for all real values of x, so just find the differential of the function and put x=c in it and equate it with the value you get using $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ .
Complete step-by-step answer:
Before starting with the solution, let us discuss Lagrange’s Theorem. The theorem states that if a function f is continuous in the interval [a,b] and is differentiable in the interval (a,b) then there exists at least one c lying in the interval (a,b) such that $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ .
Now starting with the solution. The function given to us is $f(x)={{x}^{3}}-4{{x}^{2}}+8x+11$ in the interval [0,1] and it is a polynomial and we know that polynomials are continuous and differentiable for all real values of x. Therefore, we can say that:
$f'\left( c \right)=\dfrac{f(1)-f(0)}{1-0}............(i)$
Now we know $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , so, we can say:
$f'(x)=3{{x}^{2}}-8x+8$
Now we will put x=c. On doing so, we get
$f'(c)=3{{c}^{2}}-8c+8$
Now, if we put this in equation (i), we get
$3{{c}^{2}}-8c+8=\dfrac{f(1)-f(0)}{1-0}$
Now we will use the definition of the function f. On doing so, we get
$3{{c}^{2}}-8c+8=\dfrac{{{1}^{3}}-4\times {{1}^{2}}+8\times 1+11-\left( {{0}^{3}}-4\times {{0}^{2}}+8\times 0+11 \right)}{1-0}$
$\Rightarrow 3{{c}^{2}}-8c+8=\dfrac{1-4+8+11-11}{1}$
$\Rightarrow 3{{c}^{2}}-8c+8=5$
$\Rightarrow 3{{c}^{2}}-8c+3=0$
Now, the final equation we got was a quadratic equation. So, we will use the quadratic formula to get its root.
$\therefore c=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-(-8)\pm \sqrt{{{\left( -8 \right)}^{2}}-4\times 3\times 3}}{2\times 3}=\dfrac{8\pm \sqrt{64-36}}{6}=\dfrac{8\pm \sqrt{28}}{6}$
But if we see $\dfrac{8+\sqrt{28}}{6}$ doesn’t lie in the rage (0,1), so the only possible value of c is $c=\dfrac{8-\sqrt{28}}{6}=\dfrac{2\left( 4-\sqrt{7} \right)}{6}=\dfrac{4-\sqrt{7}}{3}$
Therefore, the answer to the above question is option (b).
Note: While using Rolle’s Theorem and Lagrange’s mean value theorem, don’t forget to ensure that the function is differentiable and continuous in the given interval, as it is a necessary condition for this theorem to hold true. Also, don’t forget to make sure that the value of c is lying in the interval that you are using for these theorems.
Complete step-by-step answer:
Before starting with the solution, let us discuss Lagrange’s Theorem. The theorem states that if a function f is continuous in the interval [a,b] and is differentiable in the interval (a,b) then there exists at least one c lying in the interval (a,b) such that $f'\left( c \right)=\dfrac{f(b)-f(a)}{b-a}$ .
Now starting with the solution. The function given to us is $f(x)={{x}^{3}}-4{{x}^{2}}+8x+11$ in the interval [0,1] and it is a polynomial and we know that polynomials are continuous and differentiable for all real values of x. Therefore, we can say that:
$f'\left( c \right)=\dfrac{f(1)-f(0)}{1-0}............(i)$
Now we know $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , so, we can say:
$f'(x)=3{{x}^{2}}-8x+8$
Now we will put x=c. On doing so, we get
$f'(c)=3{{c}^{2}}-8c+8$
Now, if we put this in equation (i), we get
$3{{c}^{2}}-8c+8=\dfrac{f(1)-f(0)}{1-0}$
Now we will use the definition of the function f. On doing so, we get
$3{{c}^{2}}-8c+8=\dfrac{{{1}^{3}}-4\times {{1}^{2}}+8\times 1+11-\left( {{0}^{3}}-4\times {{0}^{2}}+8\times 0+11 \right)}{1-0}$
$\Rightarrow 3{{c}^{2}}-8c+8=\dfrac{1-4+8+11-11}{1}$
$\Rightarrow 3{{c}^{2}}-8c+8=5$
$\Rightarrow 3{{c}^{2}}-8c+3=0$
Now, the final equation we got was a quadratic equation. So, we will use the quadratic formula to get its root.
$\therefore c=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-(-8)\pm \sqrt{{{\left( -8 \right)}^{2}}-4\times 3\times 3}}{2\times 3}=\dfrac{8\pm \sqrt{64-36}}{6}=\dfrac{8\pm \sqrt{28}}{6}$
But if we see $\dfrac{8+\sqrt{28}}{6}$ doesn’t lie in the rage (0,1), so the only possible value of c is $c=\dfrac{8-\sqrt{28}}{6}=\dfrac{2\left( 4-\sqrt{7} \right)}{6}=\dfrac{4-\sqrt{7}}{3}$
Therefore, the answer to the above question is option (b).
Note: While using Rolle’s Theorem and Lagrange’s mean value theorem, don’t forget to ensure that the function is differentiable and continuous in the given interval, as it is a necessary condition for this theorem to hold true. Also, don’t forget to make sure that the value of c is lying in the interval that you are using for these theorems.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE