Answer
Verified
397.2k+ views
Hint:The given equation is based on a special case of the binomial theorem. We can simply expand the equation using the binomial theorem, then square on both the sides and arrive at the answer using the formula: \[{(1 + x)^n} = \sum\limits_{}^n {_{r - 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\] . Finally, we need to find the value of \[C_1^2 + C_2^2 + ... + C_n^2\] by the above formula.
Complete step by step answer:
The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.
Binomial Theorem can be explained as-
If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]
where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Points to be noted are:
-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].
-The sum of exponents of \[x\] and \[y\] is always \[n\].
-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].
-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.
We can expand the equation with the help of formula as follows:
\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]
\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]
Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].
The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]
Hence, we will get the squared equation as follows:
\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]
Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.
Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].
Note: Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.
\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.
Complete step by step answer:
The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.
Binomial Theorem can be explained as-
If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]
where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Points to be noted are:
-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].
-The sum of exponents of \[x\] and \[y\] is always \[n\].
-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].
-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.
We can expand the equation with the help of formula as follows:
\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]
\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]
Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].
The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]
Hence, we will get the squared equation as follows:
\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]
Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.
Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].
Note: Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.
\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE