Answer
Verified
498.6k+ views
Hint: In inverse trigonometric functions, we have a formula ${{\cos }^{-1}}\left( \cos x \right)=x$ if $x$ is a principle angle i.e. $x\in \left[ 0,\pi \right]$. In this question, we will start from the innermost term and convert them to $\cos $ or ${{\cos }^{-1}}$ functions and then use the above formula.
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In the inverse trigonometric functions, we have the following formulas,
$\left( 1 \right){{\cos }^{-1}}\left( \cos x \right)=x$
$\left( 2 \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$
$\left( 3 \right)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$
In the question, we are required to solve ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$. To solve this, we will start from the innermost function and apply the above listed formulas till we reach the outermost function. We will convert all the functions in the form of $\cos $ or ${{\cos }^{-1}}$ with the use of the above listed formulas since the outermost function is a ${{\cos }^{-1}}$ function.
The innermost function is $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$. Using formula $\left( 2 \right)$, we get $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ equal to,
$2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}$
Using formula $\left( 3 \right)$, we can write \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\] as,
\[\begin{align}
& 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{1-{{\left( \dfrac{1}{\sqrt{2}-1} \right)}^{2}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{2+1-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{3-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{2-2\sqrt{2}}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{-2\left( \sqrt{2}-1 \right)}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( -1 \right) \\
\end{align}\]
From inverse trigonometric functions, we have ${{\tan }^{-1}}\left( -1 \right)=\dfrac{3\pi }{4}$. Hence, we can say from the above equation that \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}=\dfrac{3\pi }{4}\]. Since we had simplified $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ to \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\], so finally, we can say that \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\].
Since we got \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\], substituting this in the expression given in the question i.e. ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$ .
The angle inside the ${{\cos }^{-1}}\cos $ function is a primary angle since it is less that $\pi $ and greater than $0$. So, we can apply formula $\left( 1 \right)$ to ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$.
Using formula $\left( 1 \right)$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}=\dfrac{3\pi }{4}$.
Hence, the answer is option (c).
Note: One must know that the formula ${{\cos }^{-1}}\left( \cos x \right)=x$is valid only when $x$ is a primary angle i.e. $x\in \left[ 0,\pi \right]$. One cannot use this formula if $x$ is not a primary angle i.e. $x\notin \left[ 0,\pi \right]$.
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In the inverse trigonometric functions, we have the following formulas,
$\left( 1 \right){{\cos }^{-1}}\left( \cos x \right)=x$
$\left( 2 \right){{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$
$\left( 3 \right)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$
In the question, we are required to solve ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$. To solve this, we will start from the innermost function and apply the above listed formulas till we reach the outermost function. We will convert all the functions in the form of $\cos $ or ${{\cos }^{-1}}$ with the use of the above listed formulas since the outermost function is a ${{\cos }^{-1}}$ function.
The innermost function is $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$. Using formula $\left( 2 \right)$, we get $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ equal to,
$2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}$
Using formula $\left( 3 \right)$, we can write \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\] as,
\[\begin{align}
& 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{1-{{\left( \dfrac{1}{\sqrt{2}-1} \right)}^{2}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{2+1-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\left( \dfrac{3-2\sqrt{2}-1}{{{\left( \sqrt{2}-1 \right)}^{2}}} \right)} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{2-2\sqrt{2}}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{\sqrt{2}-1}}{\dfrac{-2\left( \sqrt{2}-1 \right)}{{{\left( \sqrt{2}-1 \right)}^{2}}}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}={{\tan }^{-1}}\left( -1 \right) \\
\end{align}\]
From inverse trigonometric functions, we have ${{\tan }^{-1}}\left( -1 \right)=\dfrac{3\pi }{4}$. Hence, we can say from the above equation that \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}=\dfrac{3\pi }{4}\]. Since we had simplified $2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)$ to \[2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}-1}\], so finally, we can say that \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\].
Since we got \[2{{\cot }^{-1}}\left( \sqrt{2}-1 \right)=\dfrac{3\pi }{4}\], substituting this in the expression given in the question i.e. ${{\cos }^{-1}}\left\{ \cos 2{{\cot }^{-1}}\left( \sqrt{2}-1 \right) \right\}$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$ .
The angle inside the ${{\cos }^{-1}}\cos $ function is a primary angle since it is less that $\pi $ and greater than $0$. So, we can apply formula $\left( 1 \right)$ to ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}$.
Using formula $\left( 1 \right)$, we get ${{\cos }^{-1}}\left\{ \cos \left( \dfrac{3\pi }{4} \right) \right\}=\dfrac{3\pi }{4}$.
Hence, the answer is option (c).
Note: One must know that the formula ${{\cos }^{-1}}\left( \cos x \right)=x$is valid only when $x$ is a primary angle i.e. $x\in \left[ 0,\pi \right]$. One cannot use this formula if $x$ is not a primary angle i.e. $x\notin \left[ 0,\pi \right]$.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE