Answer
Verified
492.6k+ views
Hint: First of all, apply logarithm to the function to obtain a simple equation. Then use the product rule of derivatives to find the derivative of the given function. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Let \[y = {x^x}\]
Applying logarithms on both sides, we get
\[ \Rightarrow \log y = \log {x^x}\]
We know that \[\log {a^b} = b\log a\]
\[ \Rightarrow \log y = x\log x\]
Differentiating on both sides w.r.t \[x\], we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
By product rule of derivatives, we have
\[
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x \times 1 \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
\Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) \\
\therefore \dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log x} \right){\text{ }}\left[ {\because y = {x^x}} \right] \\
\]
Therefore, the derivative of \[{x^x}\] is \[{x^x}\left( {1 + \log x} \right)\].
Thus, the correct option is C. \[{x^x}\left( {1 + \log x} \right)\].
Note: The product rule states that if \[f\left( x \right)\] and \[g\left( x \right)\] are both differentiable, then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]\]. Remember the derivative of \[{x^x}\] as a formula which will be useful to solve higher derivative problems.
Complete step-by-step answer:
Let \[y = {x^x}\]
Applying logarithms on both sides, we get
\[ \Rightarrow \log y = \log {x^x}\]
We know that \[\log {a^b} = b\log a\]
\[ \Rightarrow \log y = x\log x\]
Differentiating on both sides w.r.t \[x\], we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
By product rule of derivatives, we have
\[
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( x \right) \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x \times 1 \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = 1 + \log x \\
\Rightarrow \dfrac{{dy}}{{dx}} = y\left( {1 + \log x} \right) \\
\therefore \dfrac{{dy}}{{dx}} = {x^x}\left( {1 + \log x} \right){\text{ }}\left[ {\because y = {x^x}} \right] \\
\]
Therefore, the derivative of \[{x^x}\] is \[{x^x}\left( {1 + \log x} \right)\].
Thus, the correct option is C. \[{x^x}\left( {1 + \log x} \right)\].
Note: The product rule states that if \[f\left( x \right)\] and \[g\left( x \right)\] are both differentiable, then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]\]. Remember the derivative of \[{x^x}\] as a formula which will be useful to solve higher derivative problems.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE