Answer
Verified
439.8k+ views
Hint: Consider the numerator of the given expression and use the formula: - \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], to simplify the numerator. Now, consider the denominator and apply the formula: - \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\] to simplify the denominator. Once both numerator and denominator are simplified, apply the formula, \[\dfrac{{{p}^{m}}}{{{p}^{n}}}={{p}^{m-n}}\] to get the answer.
Complete step-by-step solution
Here, we have been provided with the expression: - \[\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] and we have to find its value. Let us assume its value as ‘E’.
\[\Rightarrow E=\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] - (1)
Now, considering the numerator of expression (1), we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}\]
We know that, \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], therefore we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b+b+c+c+a}}\]
\[\Rightarrow \] Numerator = \[{{x}^{2a+2b+2c}}\]
Now, considering the denominator of expression (1), we have,
\[\Rightarrow \] Denominator = \[{{\left( {{x}^{a+b+c}} \right)}^{2}}\]
Now, applying the formula, \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\], we get,
\[\Rightarrow \] Denominator = \[{{x}^{\left( a+b+c \right)\times 2}}\]
\[\Rightarrow \] Denominator = \[{{x}^{2\left( a+b+c \right)}}\]
Therefore, substituting the obtained values of numerator and denominator in expression (1), we have,
\[\Rightarrow E=\dfrac{{{x}^{2\left( a+b+c \right)}}}{{{x}^{2\left( a+b+c \right)}}}\]
Applying the formula, \[\dfrac{{{p}^{m}}}{{{p}^{n}}}={{p}^{m-n}}\], we get,
\[\Rightarrow E={{x}^{2\left( a+b+c \right)-2\left( a+b+c \right)}}\]
Cancelling the like terms, we get,
\[\Rightarrow E={{x}^{0}}\]
Hence, option (d) is the correct answer.
Note: One may note that we can solve the question by only simplifying either numerator or denominator but here we have simplified both of them so that we can see the use of all the important formulas of the topic ‘exponents and powers’. We must remember some basic formulas of the topic ‘exponents and powers’ like: - \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], \[{{p}^{m}}\div {{p}^{n}}={{p}^{m-n}}\] and \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\]. These formulas are used everywhere.
Complete step-by-step solution
Here, we have been provided with the expression: - \[\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] and we have to find its value. Let us assume its value as ‘E’.
\[\Rightarrow E=\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] - (1)
Now, considering the numerator of expression (1), we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}\]
We know that, \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], therefore we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b+b+c+c+a}}\]
\[\Rightarrow \] Numerator = \[{{x}^{2a+2b+2c}}\]
Now, considering the denominator of expression (1), we have,
\[\Rightarrow \] Denominator = \[{{\left( {{x}^{a+b+c}} \right)}^{2}}\]
Now, applying the formula, \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\], we get,
\[\Rightarrow \] Denominator = \[{{x}^{\left( a+b+c \right)\times 2}}\]
\[\Rightarrow \] Denominator = \[{{x}^{2\left( a+b+c \right)}}\]
Therefore, substituting the obtained values of numerator and denominator in expression (1), we have,
\[\Rightarrow E=\dfrac{{{x}^{2\left( a+b+c \right)}}}{{{x}^{2\left( a+b+c \right)}}}\]
Applying the formula, \[\dfrac{{{p}^{m}}}{{{p}^{n}}}={{p}^{m-n}}\], we get,
\[\Rightarrow E={{x}^{2\left( a+b+c \right)-2\left( a+b+c \right)}}\]
Cancelling the like terms, we get,
\[\Rightarrow E={{x}^{0}}\]
Hence, option (d) is the correct answer.
Note: One may note that we can solve the question by only simplifying either numerator or denominator but here we have simplified both of them so that we can see the use of all the important formulas of the topic ‘exponents and powers’. We must remember some basic formulas of the topic ‘exponents and powers’ like: - \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], \[{{p}^{m}}\div {{p}^{n}}={{p}^{m-n}}\] and \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\]. These formulas are used everywhere.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE