
The value of \[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]is
a. \[\dfrac{{\text{1}}}{{\text{n}}}{\text{log(}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{{{\text{x}}^{\text{n}}}{\text{ + 1}}}}{\text{) + C}}\]
b. \[{\text{log(}}\dfrac{{{{\text{x}}^{\text{n}}} + 1}}{{{{\text{x}}^{\text{n}}}}}{\text{) + C}}\]
c. \[\dfrac{{\text{1}}}{{\text{n}}}{\text{log(}}\dfrac{{{{\text{x}}^{\text{n}}}{\text{ + 1}}}}{{{{\text{x}}^{\text{n}}}}}{\text{) + C}}\]
d. \[{\text{log(}}\dfrac{{{{\text{x}}^{\text{n}}}}}{{{{\text{x}}^{\text{n}}} + 1}}{\text{) + C}}\]
Answer
494.1k+ views
Hint: First multiply numerator and denominator by \[{{\text{x}}^{{\text{n - 1}}}}\]and assume \[{{\text{x}}^{\text{n}}}{\text{ = t}}\] and simplifying the problem. Then the integration will turn out to be a easier fraction to deal with.
Complete step by step solution: Given,
\[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
On Multiplying denominator and numerator by \[{{\text{x}}^{{\text{n - 1}}}}\],
\[ = \int {\dfrac{{{{\text{x}}^{{\text{n - 1}}}}{\text{dx}}}}{{{{\text{x}}^{\text{n}}}{\text{(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
Now, let, \[{{\text{x}}^{\text{n}}}{\text{ = t}}\]
\[ \Rightarrow {{\text{x}}^{{\text{n - 1}}}}{\text{dx = }}\dfrac{{{\text{dt}}}}{{\text{n}}}\],
So we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{n}}}\int {\dfrac{{{\text{dt}}}}{{{\text{t(t + 1)}}}}} \]………(1)
Now, we use the form of partial fractions to find the integral,
\[
\dfrac{1}{{t(t + 1)}} = \dfrac{A}{t} + \dfrac{B}{{t + 1}} \\
\Rightarrow \dfrac{1}{{t(t + 1)}} = \dfrac{{A(t + 1) + Bt}}{{t(t + 1)}} \\
\]
So,
\[A(t + 1) + Bt\]= 1
If we take, \[t = 0\] then,
\[A(0 + 1) + B.0 = 1\] gives us \[A = 1\]
And also for , \[t = - 1\]
\[A( - 1 + 1) + B. - 1 = 1\] gives us \[B = - 1\]
Now equation 1 can be written as,
\[ = \dfrac{1}{n}[\int {(\dfrac{1}{t} - \dfrac{1}{{t + 1}})dt} \]
If we integrate now, we have, as integral of \[\dfrac{1}{t}\] is \[\log t\],
\[ \Rightarrow \dfrac{1}{n}[\log t - \log (t + 1)]\]
Now, also,
`\[\log a - \log b = \log \dfrac{a}{b}\]
\[ \Rightarrow \dfrac{1}{n}[\log (\dfrac{t}{{t + 1}})]\]
Putting the value of t we have,
\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]\]
So, we get, \[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]+C\]
Note: \[\dfrac{1}{{t(t + 1)}}\]can be directly written as sum of two fractions \[\dfrac{1}{t}, - \dfrac{1}{{t + 1}}\]as \[\dfrac{1}{{t(t + 1)}} = \dfrac{1}{t} - \dfrac{1}{{t + 1}}\]. We can also do this integration in another way by multiplying the denominator and numerator by \[{x^n} - 1\].
Complete step by step solution: Given,
\[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
On Multiplying denominator and numerator by \[{{\text{x}}^{{\text{n - 1}}}}\],
\[ = \int {\dfrac{{{{\text{x}}^{{\text{n - 1}}}}{\text{dx}}}}{{{{\text{x}}^{\text{n}}}{\text{(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]
Now, let, \[{{\text{x}}^{\text{n}}}{\text{ = t}}\]
\[ \Rightarrow {{\text{x}}^{{\text{n - 1}}}}{\text{dx = }}\dfrac{{{\text{dt}}}}{{\text{n}}}\],
So we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{n}}}\int {\dfrac{{{\text{dt}}}}{{{\text{t(t + 1)}}}}} \]………(1)
Now, we use the form of partial fractions to find the integral,
\[
\dfrac{1}{{t(t + 1)}} = \dfrac{A}{t} + \dfrac{B}{{t + 1}} \\
\Rightarrow \dfrac{1}{{t(t + 1)}} = \dfrac{{A(t + 1) + Bt}}{{t(t + 1)}} \\
\]
So,
\[A(t + 1) + Bt\]= 1
If we take, \[t = 0\] then,
\[A(0 + 1) + B.0 = 1\] gives us \[A = 1\]
And also for , \[t = - 1\]
\[A( - 1 + 1) + B. - 1 = 1\] gives us \[B = - 1\]
Now equation 1 can be written as,
\[ = \dfrac{1}{n}[\int {(\dfrac{1}{t} - \dfrac{1}{{t + 1}})dt} \]
If we integrate now, we have, as integral of \[\dfrac{1}{t}\] is \[\log t\],
\[ \Rightarrow \dfrac{1}{n}[\log t - \log (t + 1)]\]
Now, also,
`\[\log a - \log b = \log \dfrac{a}{b}\]
\[ \Rightarrow \dfrac{1}{n}[\log (\dfrac{t}{{t + 1}})]\]
Putting the value of t we have,
\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]\]
So, we get, \[\int {\dfrac{{{\text{dx}}}}{{{\text{x(}}{{\text{x}}^{\text{n}}}{\text{ + 1)}}}}} \]\[ = \dfrac{1}{n}[\log (\dfrac{{{x^n}}}{{{x^n} + 1}})]+C\]
Note: \[\dfrac{1}{{t(t + 1)}}\]can be directly written as sum of two fractions \[\dfrac{1}{t}, - \dfrac{1}{{t + 1}}\]as \[\dfrac{1}{{t(t + 1)}} = \dfrac{1}{t} - \dfrac{1}{{t + 1}}\]. We can also do this integration in another way by multiplying the denominator and numerator by \[{x^n} - 1\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE
