
The value of Planck’s constant is \[6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\]. The velocity of light is \[3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\]. Which value is closest to the wavelength in nanometer of a quantum of light with frequency of \[8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\]?
\[5 \times {10^{ - 18}}\]
\[4 \times {10^1}\]
\[3 \times {10^7}\]
\[2 \times {10^{ - 25}}\]
Answer
555.3k+ views
Hint: Use the expression for speed of light in terms of wavelength and frequency of the wave. Substitute the given values of frequency and speed of light and determine the wavelength of a quantum of light.
Formula used:
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Complete step by step solution:
We have given the value of Planck’s constant \[h = 6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\], velocity of light\[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and frequency of a quantum of light \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\].
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
\[ \Rightarrow \lambda = \dfrac{c}{\nu }\]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Substituting \[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\] in the above equation, we get,
\[\lambda = \dfrac{{3 \times {{10}^8}\,{\text{m}}\,{\text{se}}{{\text{c}}^{ - 1}}}}{{8 \times {{10}^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}}}\]
\[ \Rightarrow \lambda = \left( {3.75 \times {{10}^{ - 8}}\,{\text{m}}} \right)\left( {\dfrac{{1\,{\text{nm}}}}{{{{10}^{ - 9}}\,{\text{m}}}}} \right)\]
\[ \Rightarrow \lambda = 3.75 \times {10^1}\,{\text{nm}}\]
\[ \Rightarrow \lambda \approx 4 \times {10^1}\,{\text{nm}}\]
Therefore, the value \[4 \times {10^1}\,{\text{nm}}\] is the closest value of wavelength in nanometers.
So, the correct answer is “Option B”.
Additional Information:
We know that light waves are electromagnetic waves. Electromagnetic waves have frequency, wavelength and velocity since it is a transverse wave. Frequency of the transverse wave is defined as the number of oscillations performed by the wave is one second. Also, the wavelength of the wave is the distance between two consecutive crests of the wave in meters. We know the amplitude of the wave is the maximum vibrations from the mean position.
Note:
Speed of light is constant in vacuum irrespective of frequency and wavelength since the vacuum is not a dispersive medium.
Frequency of light depends on the body that emits light while wavelength of light depends on the medium through which the light is propagating.
Formula used:
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Complete step by step solution:
We have given the value of Planck’s constant \[h = 6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\], velocity of light\[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and frequency of a quantum of light \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\].
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
\[ \Rightarrow \lambda = \dfrac{c}{\nu }\]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Substituting \[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\] in the above equation, we get,
\[\lambda = \dfrac{{3 \times {{10}^8}\,{\text{m}}\,{\text{se}}{{\text{c}}^{ - 1}}}}{{8 \times {{10}^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}}}\]
\[ \Rightarrow \lambda = \left( {3.75 \times {{10}^{ - 8}}\,{\text{m}}} \right)\left( {\dfrac{{1\,{\text{nm}}}}{{{{10}^{ - 9}}\,{\text{m}}}}} \right)\]
\[ \Rightarrow \lambda = 3.75 \times {10^1}\,{\text{nm}}\]
\[ \Rightarrow \lambda \approx 4 \times {10^1}\,{\text{nm}}\]
Therefore, the value \[4 \times {10^1}\,{\text{nm}}\] is the closest value of wavelength in nanometers.
So, the correct answer is “Option B”.
Additional Information:
We know that light waves are electromagnetic waves. Electromagnetic waves have frequency, wavelength and velocity since it is a transverse wave. Frequency of the transverse wave is defined as the number of oscillations performed by the wave is one second. Also, the wavelength of the wave is the distance between two consecutive crests of the wave in meters. We know the amplitude of the wave is the maximum vibrations from the mean position.
Note:
Speed of light is constant in vacuum irrespective of frequency and wavelength since the vacuum is not a dispersive medium.
Frequency of light depends on the body that emits light while wavelength of light depends on the medium through which the light is propagating.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

