Answer
Verified
438.3k+ views
Hint: Use the expression for speed of light in terms of wavelength and frequency of the wave. Substitute the given values of frequency and speed of light and determine the wavelength of a quantum of light.
Formula used:
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Complete step by step solution:
We have given the value of Planck’s constant \[h = 6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\], velocity of light\[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and frequency of a quantum of light \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\].
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
\[ \Rightarrow \lambda = \dfrac{c}{\nu }\]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Substituting \[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\] in the above equation, we get,
\[\lambda = \dfrac{{3 \times {{10}^8}\,{\text{m}}\,{\text{se}}{{\text{c}}^{ - 1}}}}{{8 \times {{10}^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}}}\]
\[ \Rightarrow \lambda = \left( {3.75 \times {{10}^{ - 8}}\,{\text{m}}} \right)\left( {\dfrac{{1\,{\text{nm}}}}{{{{10}^{ - 9}}\,{\text{m}}}}} \right)\]
\[ \Rightarrow \lambda = 3.75 \times {10^1}\,{\text{nm}}\]
\[ \Rightarrow \lambda \approx 4 \times {10^1}\,{\text{nm}}\]
Therefore, the value \[4 \times {10^1}\,{\text{nm}}\] is the closest value of wavelength in nanometers.
So, the correct answer is “Option B”.
Additional Information:
We know that light waves are electromagnetic waves. Electromagnetic waves have frequency, wavelength and velocity since it is a transverse wave. Frequency of the transverse wave is defined as the number of oscillations performed by the wave is one second. Also, the wavelength of the wave is the distance between two consecutive crests of the wave in meters. We know the amplitude of the wave is the maximum vibrations from the mean position.
Note:
Speed of light is constant in vacuum irrespective of frequency and wavelength since the vacuum is not a dispersive medium.
Frequency of light depends on the body that emits light while wavelength of light depends on the medium through which the light is propagating.
Formula used:
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Complete step by step solution:
We have given the value of Planck’s constant \[h = 6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\], velocity of light\[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and frequency of a quantum of light \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\].
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
\[ \Rightarrow \lambda = \dfrac{c}{\nu }\]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Substituting \[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\] in the above equation, we get,
\[\lambda = \dfrac{{3 \times {{10}^8}\,{\text{m}}\,{\text{se}}{{\text{c}}^{ - 1}}}}{{8 \times {{10}^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}}}\]
\[ \Rightarrow \lambda = \left( {3.75 \times {{10}^{ - 8}}\,{\text{m}}} \right)\left( {\dfrac{{1\,{\text{nm}}}}{{{{10}^{ - 9}}\,{\text{m}}}}} \right)\]
\[ \Rightarrow \lambda = 3.75 \times {10^1}\,{\text{nm}}\]
\[ \Rightarrow \lambda \approx 4 \times {10^1}\,{\text{nm}}\]
Therefore, the value \[4 \times {10^1}\,{\text{nm}}\] is the closest value of wavelength in nanometers.
So, the correct answer is “Option B”.
Additional Information:
We know that light waves are electromagnetic waves. Electromagnetic waves have frequency, wavelength and velocity since it is a transverse wave. Frequency of the transverse wave is defined as the number of oscillations performed by the wave is one second. Also, the wavelength of the wave is the distance between two consecutive crests of the wave in meters. We know the amplitude of the wave is the maximum vibrations from the mean position.
Note:
Speed of light is constant in vacuum irrespective of frequency and wavelength since the vacuum is not a dispersive medium.
Frequency of light depends on the body that emits light while wavelength of light depends on the medium through which the light is propagating.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE