Answer
Verified
454.2k+ views
Hint: Use the expression for speed of light in terms of wavelength and frequency of the wave. Substitute the given values of frequency and speed of light and determine the wavelength of a quantum of light.
Formula used:
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Complete step by step solution:
We have given the value of Planck’s constant \[h = 6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\], velocity of light\[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and frequency of a quantum of light \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\].
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
\[ \Rightarrow \lambda = \dfrac{c}{\nu }\]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Substituting \[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\] in the above equation, we get,
\[\lambda = \dfrac{{3 \times {{10}^8}\,{\text{m}}\,{\text{se}}{{\text{c}}^{ - 1}}}}{{8 \times {{10}^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}}}\]
\[ \Rightarrow \lambda = \left( {3.75 \times {{10}^{ - 8}}\,{\text{m}}} \right)\left( {\dfrac{{1\,{\text{nm}}}}{{{{10}^{ - 9}}\,{\text{m}}}}} \right)\]
\[ \Rightarrow \lambda = 3.75 \times {10^1}\,{\text{nm}}\]
\[ \Rightarrow \lambda \approx 4 \times {10^1}\,{\text{nm}}\]
Therefore, the value \[4 \times {10^1}\,{\text{nm}}\] is the closest value of wavelength in nanometers.
So, the correct answer is “Option B”.
Additional Information:
We know that light waves are electromagnetic waves. Electromagnetic waves have frequency, wavelength and velocity since it is a transverse wave. Frequency of the transverse wave is defined as the number of oscillations performed by the wave is one second. Also, the wavelength of the wave is the distance between two consecutive crests of the wave in meters. We know the amplitude of the wave is the maximum vibrations from the mean position.
Note:
Speed of light is constant in vacuum irrespective of frequency and wavelength since the vacuum is not a dispersive medium.
Frequency of light depends on the body that emits light while wavelength of light depends on the medium through which the light is propagating.
Formula used:
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Complete step by step solution:
We have given the value of Planck’s constant \[h = 6.63 \times {10^{ - 34}}\,{\text{J}} - {\text{s}}\], velocity of light\[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and frequency of a quantum of light \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\].
We know that the speed of light is expressed as,
\[c = \nu \lambda \]
\[ \Rightarrow \lambda = \dfrac{c}{\nu }\]
Here, c is the speed of light, \[\lambda \] is the wavelength and \[\nu \] is the frequency.
Substituting \[c = 3 \times {10^8}\,{\text{m}}{{\text{s}}^{ - 1}}\] and \[\nu = 8 \times {10^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}\] in the above equation, we get,
\[\lambda = \dfrac{{3 \times {{10}^8}\,{\text{m}}\,{\text{se}}{{\text{c}}^{ - 1}}}}{{8 \times {{10}^{15}}\,{\text{se}}{{\text{c}}^{ - 1}}}}\]
\[ \Rightarrow \lambda = \left( {3.75 \times {{10}^{ - 8}}\,{\text{m}}} \right)\left( {\dfrac{{1\,{\text{nm}}}}{{{{10}^{ - 9}}\,{\text{m}}}}} \right)\]
\[ \Rightarrow \lambda = 3.75 \times {10^1}\,{\text{nm}}\]
\[ \Rightarrow \lambda \approx 4 \times {10^1}\,{\text{nm}}\]
Therefore, the value \[4 \times {10^1}\,{\text{nm}}\] is the closest value of wavelength in nanometers.
So, the correct answer is “Option B”.
Additional Information:
We know that light waves are electromagnetic waves. Electromagnetic waves have frequency, wavelength and velocity since it is a transverse wave. Frequency of the transverse wave is defined as the number of oscillations performed by the wave is one second. Also, the wavelength of the wave is the distance between two consecutive crests of the wave in meters. We know the amplitude of the wave is the maximum vibrations from the mean position.
Note:
Speed of light is constant in vacuum irrespective of frequency and wavelength since the vacuum is not a dispersive medium.
Frequency of light depends on the body that emits light while wavelength of light depends on the medium through which the light is propagating.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Which animal never drinks water in its entire life class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE
What is composite fish culture What are the advantages class 12 biology CBSE