Answer
Verified
469.2k+ views
Hint: We have to evaluate the value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] first and we use reciprocal identity \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Then we add the term by using the identity \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and in the end we again use the reciprocal identity to get the solution in standard form as asked.
Complete step-by-step answer:
We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]
Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,
\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,
\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]
Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms
\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
Again using the reciprocal identity, we know that,
\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]
\[\dfrac{1}{\cos \theta }=sec\theta \]
We get,
\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]
\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]
So, the correct answer is “Option B”.
Note: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]
We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]
\[\Rightarrow 1+1=2\]
While at \[\theta ={{45}^{\circ }},\]
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]
We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]
Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
At \[\theta ={{45}^{\circ }},\] we know that,
\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]
So, we get,
\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]
\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]
Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
At \[\theta ={{45}^{\circ }},\] we get,
\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]
As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]
Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]
So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
(e) 1
At \[\theta ={{45}^{\circ }},\] 1 is always 1.
But from (i), we have
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
Complete step-by-step answer:
We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]
Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,
\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,
\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]
Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms
\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
Again using the reciprocal identity, we know that,
\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]
\[\dfrac{1}{\cos \theta }=sec\theta \]
We get,
\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]
\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]
So, the correct answer is “Option B”.
Note: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]
We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]
\[\Rightarrow 1+1=2\]
While at \[\theta ={{45}^{\circ }},\]
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]
We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]
Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
At \[\theta ={{45}^{\circ }},\] we know that,
\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]
So, we get,
\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]
\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]
Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
At \[\theta ={{45}^{\circ }},\] we get,
\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]
As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]
Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]
So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
(e) 1
At \[\theta ={{45}^{\circ }},\] 1 is always 1.
But from (i), we have
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE