The value of the determinant \[\left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\cos }^2}25^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\] is
A. \[-2\]
B. \[-1\]
C. 0
D. 1
E. 2
Answer
Verified
442.2k+ views
Hint: Here we need to find the value of the determinant of the given matrix. The given matrix is of the order 3. So we will use the rules to find the determinant. Then we will use the basic trigonometric identities and then we will simplify each element of the matrix first.
Complete step by step solution:
We will first calculate the value of the given determinant i.e.
\[D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\cos }^2}25^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Here, we will use the basic trigonometric identities and then we will simplify each element of the matrix first.
We know that from the periodic trigonometric identities that \[\sin \theta = \cos \left( {90^\circ - \theta } \right)\]
Applying this identity, we get
${{\sin }^{2}}65{}^\circ =\cos \left( 90{}^\circ -65{}^\circ \right)={{\cos }^{2}}25{}^\circ $
Therefore, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we can write \[\cot 135^\circ \]as \[\cot \left( {90^\circ + 45^\circ } \right)\] and we know the periodic trigonometric identities that \[ - \tan \theta = \cos \left( {90^\circ + \theta } \right)\]
Applying this here, we get
\[\cot \left( {90^\circ + 45^\circ } \right) = - \tan 45^\circ = - 1\]
Substituting this value, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we will apply, \[{C_1} \to {C_1} + {C_2} + {C_3}\].
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ + {{\cos }^2}36^\circ - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ - 1 + {{\cos }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1 + {{\sin }^2}65^\circ + {{\cos }^2}65^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know the trigonometric identity that \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Using this identity here, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{1 - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{1 - 1}&{ - 1}&{{{\cos }^2}53^\circ }\\{1 - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
On further simplification, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}0&{{{\cos }^2}36^\circ }&{ - 1}\\0&{ - 1}&{{{\cos }^2}53^\circ }\\0&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know that if all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero.
Therefore, we get the value of determinant equal to zero.
Hence, the correct answer is option C.
Note:
Here we have obtained the value of the determinant of the matrix which is of order 3. So we need to know some basic properties of determinants. The most important property of a determinant is that if two or more rows are similar then the value of the determinant is equal to zero. Also, keep in mind that if we interchange the rows and columns the value of the determinant remains the same. If all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero. If we multiply all the elements of a row by a constant then the resultant determinant will be constant times the value of the original determinant.
Complete step by step solution:
We will first calculate the value of the given determinant i.e.
\[D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\cos }^2}25^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Here, we will use the basic trigonometric identities and then we will simplify each element of the matrix first.
We know that from the periodic trigonometric identities that \[\sin \theta = \cos \left( {90^\circ - \theta } \right)\]
Applying this identity, we get
${{\sin }^{2}}65{}^\circ =\cos \left( 90{}^\circ -65{}^\circ \right)={{\cos }^{2}}25{}^\circ $
Therefore, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we can write \[\cot 135^\circ \]as \[\cot \left( {90^\circ + 45^\circ } \right)\] and we know the periodic trigonometric identities that \[ - \tan \theta = \cos \left( {90^\circ + \theta } \right)\]
Applying this here, we get
\[\cot \left( {90^\circ + 45^\circ } \right) = - \tan 45^\circ = - 1\]
Substituting this value, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we will apply, \[{C_1} \to {C_1} + {C_2} + {C_3}\].
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ + {{\cos }^2}36^\circ - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ - 1 + {{\cos }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1 + {{\sin }^2}65^\circ + {{\cos }^2}65^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know the trigonometric identity that \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Using this identity here, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{1 - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{1 - 1}&{ - 1}&{{{\cos }^2}53^\circ }\\{1 - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
On further simplification, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}0&{{{\cos }^2}36^\circ }&{ - 1}\\0&{ - 1}&{{{\cos }^2}53^\circ }\\0&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know that if all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero.
Therefore, we get the value of determinant equal to zero.
Hence, the correct answer is option C.
Note:
Here we have obtained the value of the determinant of the matrix which is of order 3. So we need to know some basic properties of determinants. The most important property of a determinant is that if two or more rows are similar then the value of the determinant is equal to zero. Also, keep in mind that if we interchange the rows and columns the value of the determinant remains the same. If all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero. If we multiply all the elements of a row by a constant then the resultant determinant will be constant times the value of the original determinant.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE