Answer
Verified
428.4k+ views
Hint: Here we need to find the value of the determinant of the given matrix. The given matrix is of the order 3. So we will use the rules to find the determinant. Then we will use the basic trigonometric identities and then we will simplify each element of the matrix first.
Complete step by step solution:
We will first calculate the value of the given determinant i.e.
\[D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\cos }^2}25^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Here, we will use the basic trigonometric identities and then we will simplify each element of the matrix first.
We know that from the periodic trigonometric identities that \[\sin \theta = \cos \left( {90^\circ - \theta } \right)\]
Applying this identity, we get
${{\sin }^{2}}65{}^\circ =\cos \left( 90{}^\circ -65{}^\circ \right)={{\cos }^{2}}25{}^\circ $
Therefore, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we can write \[\cot 135^\circ \]as \[\cot \left( {90^\circ + 45^\circ } \right)\] and we know the periodic trigonometric identities that \[ - \tan \theta = \cos \left( {90^\circ + \theta } \right)\]
Applying this here, we get
\[\cot \left( {90^\circ + 45^\circ } \right) = - \tan 45^\circ = - 1\]
Substituting this value, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we will apply, \[{C_1} \to {C_1} + {C_2} + {C_3}\].
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ + {{\cos }^2}36^\circ - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ - 1 + {{\cos }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1 + {{\sin }^2}65^\circ + {{\cos }^2}65^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know the trigonometric identity that \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Using this identity here, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{1 - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{1 - 1}&{ - 1}&{{{\cos }^2}53^\circ }\\{1 - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
On further simplification, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}0&{{{\cos }^2}36^\circ }&{ - 1}\\0&{ - 1}&{{{\cos }^2}53^\circ }\\0&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know that if all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero.
Therefore, we get the value of determinant equal to zero.
Hence, the correct answer is option C.
Note:
Here we have obtained the value of the determinant of the matrix which is of order 3. So we need to know some basic properties of determinants. The most important property of a determinant is that if two or more rows are similar then the value of the determinant is equal to zero. Also, keep in mind that if we interchange the rows and columns the value of the determinant remains the same. If all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero. If we multiply all the elements of a row by a constant then the resultant determinant will be constant times the value of the original determinant.
Complete step by step solution:
We will first calculate the value of the given determinant i.e.
\[D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\cos }^2}25^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Here, we will use the basic trigonometric identities and then we will simplify each element of the matrix first.
We know that from the periodic trigonometric identities that \[\sin \theta = \cos \left( {90^\circ - \theta } \right)\]
Applying this identity, we get
${{\sin }^{2}}65{}^\circ =\cos \left( 90{}^\circ -65{}^\circ \right)={{\cos }^{2}}25{}^\circ $
Therefore, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{\cot 135^\circ }\\{{{\sin }^2}53^\circ }&{\cot 135^\circ }&{{{\cos }^2}53^\circ }\\{\cot 135^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we can write \[\cot 135^\circ \]as \[\cot \left( {90^\circ + 45^\circ } \right)\] and we know the periodic trigonometric identities that \[ - \tan \theta = \cos \left( {90^\circ + \theta } \right)\]
Applying this here, we get
\[\cot \left( {90^\circ + 45^\circ } \right) = - \tan 45^\circ = - 1\]
Substituting this value, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ }&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
Now, we will apply, \[{C_1} \to {C_1} + {C_2} + {C_3}\].
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{{{\sin }^2}36^\circ + {{\cos }^2}36^\circ - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{{{\sin }^2}53^\circ - 1 + {{\cos }^2}53^\circ }&{ - 1}&{{{\cos }^2}53^\circ }\\{ - 1 + {{\sin }^2}65^\circ + {{\cos }^2}65^\circ }&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know the trigonometric identity that \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Using this identity here, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}{1 - 1}&{{{\cos }^2}36^\circ }&{ - 1}\\{1 - 1}&{ - 1}&{{{\cos }^2}53^\circ }\\{1 - 1}&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
On further simplification, we get
\[ \Rightarrow D = \left| {\begin{array}{*{20}{c}}0&{{{\cos }^2}36^\circ }&{ - 1}\\0&{ - 1}&{{{\cos }^2}53^\circ }\\0&{{{\sin }^2}65^\circ }&{{{\cos }^2}65^\circ }\end{array}} \right|\]
We know that if all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero.
Therefore, we get the value of determinant equal to zero.
Hence, the correct answer is option C.
Note:
Here we have obtained the value of the determinant of the matrix which is of order 3. So we need to know some basic properties of determinants. The most important property of a determinant is that if two or more rows are similar then the value of the determinant is equal to zero. Also, keep in mind that if we interchange the rows and columns the value of the determinant remains the same. If all the elements of any one of the rows or columns are zero then the value of the determinant is equal to zero. If we multiply all the elements of a row by a constant then the resultant determinant will be constant times the value of the original determinant.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE