Answer
Verified
496.8k+ views
Hint: In this problem we have to find the value of the given expression, use the basic conversion techniques of various inverse trigonometric ratios into one another and simplify using the various inverse trigonometric identities, to reach the answer.
Complete step-by-step answer:
Given equation is
$\sin \left[ {2{{\cos }^{ - 1}}\cot \left( {2{{\tan }^{ - 1}}\dfrac{1}{2}} \right)} \right]$
As we know $2{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}$
So use this property in above equation we have,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {{{\tan }^{ - 1}}\dfrac{{2 \times \dfrac{1}{2}}}{{1 - {{\left( {\dfrac{1}{2}} \right)}^2}}}} \right)} \right]$
Now on simplifying we have,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {{{\tan }^{ - 1}}\dfrac{4}{3}} \right)} \right]$
Now as we know ${\tan ^{ - 1}}\theta = {\cot ^{ - 1}}\dfrac{1}{\theta }$ so, use this property in above equation we have,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {{{\cot }^{ - 1}}\dfrac{3}{4}} \right)} \right]$
Now cot and cot inverse is cancel out
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\dfrac{3}{4}} \right]$
Now as we know ${\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left( {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right)$ so, use this property in above equation we have,
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{4}.\dfrac{3}{4} - \sqrt {\left( {1 - {{\left( {\dfrac{3}{4}} \right)}^2}} \right)\left( {1 - {{\left( {\dfrac{3}{4}} \right)}^2}} \right)} } \right)} \right]$
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{9}{{16}} - \left( {1 - {{\left( {\dfrac{3}{4}} \right)}^2}} \right)} \right)} \right]$
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{9}{{16}} - \left( {1 - \dfrac{9}{{16}}} \right)} \right)} \right] = \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{9}{{16}} - \dfrac{7}{{16}}} \right)} \right]$
$ = \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{2}{{16}}} \right)} \right] = \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{1}{8}} \right)} \right]$……………….. (1)
Now let $y = {\cos ^{ - 1}}\left( {\dfrac{1}{8}} \right)$
$ \Rightarrow \cos y = \dfrac{1}{8}$
Now as we know that ${\sin ^2}y + {\cos ^2}y = 1$
$
\Rightarrow {\sin ^2}y + {\left( {\dfrac{1}{8}} \right)^2} = 1 \\
\Rightarrow {\sin ^2}y = 1 - \dfrac{1}{{64}} = \dfrac{{63}}{{64}} \\
\Rightarrow \sin y = \sqrt {\dfrac{{63}}{{64}}} = \sqrt {\dfrac{{7 \times 9}}{{8 \times 8}}} = \dfrac{3}{8}\sqrt 7 \\
$
$ \Rightarrow y = {\sin ^{ - 1}}\dfrac{{3\sqrt 7 }}{8}$
Now substitute this value in equation (1) we have
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{1}{8}} \right)} \right] = \sin \left[ {{{\sin }^{ - 1}}\dfrac{{3\sqrt 7 }}{8}} \right]$
Now the sin and sin inverse is canceled out.
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {2{{\tan }^{ - 1}}\dfrac{1}{2}} \right)} \right] = \dfrac{{3\sqrt 7 }}{8}$
Hence option (a) is correct.
Note: Whenever we face such type of problems the basics is knowing about the simple inverse trigonometric identities like $2{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}$ and many others are being mentioned above. Such problems are more formula based thus having a good grasp over the identities will help in getting on the right track to reach the answer.
Complete step-by-step answer:
Given equation is
$\sin \left[ {2{{\cos }^{ - 1}}\cot \left( {2{{\tan }^{ - 1}}\dfrac{1}{2}} \right)} \right]$
As we know $2{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}$
So use this property in above equation we have,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {{{\tan }^{ - 1}}\dfrac{{2 \times \dfrac{1}{2}}}{{1 - {{\left( {\dfrac{1}{2}} \right)}^2}}}} \right)} \right]$
Now on simplifying we have,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {{{\tan }^{ - 1}}\dfrac{4}{3}} \right)} \right]$
Now as we know ${\tan ^{ - 1}}\theta = {\cot ^{ - 1}}\dfrac{1}{\theta }$ so, use this property in above equation we have,
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {{{\cot }^{ - 1}}\dfrac{3}{4}} \right)} \right]$
Now cot and cot inverse is cancel out
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\dfrac{3}{4}} \right]$
Now as we know ${\cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left( {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right)$ so, use this property in above equation we have,
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{3}{4}.\dfrac{3}{4} - \sqrt {\left( {1 - {{\left( {\dfrac{3}{4}} \right)}^2}} \right)\left( {1 - {{\left( {\dfrac{3}{4}} \right)}^2}} \right)} } \right)} \right]$
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{9}{{16}} - \left( {1 - {{\left( {\dfrac{3}{4}} \right)}^2}} \right)} \right)} \right]$
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{9}{{16}} - \left( {1 - \dfrac{9}{{16}}} \right)} \right)} \right] = \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{9}{{16}} - \dfrac{7}{{16}}} \right)} \right]$
$ = \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{2}{{16}}} \right)} \right] = \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{1}{8}} \right)} \right]$……………….. (1)
Now let $y = {\cos ^{ - 1}}\left( {\dfrac{1}{8}} \right)$
$ \Rightarrow \cos y = \dfrac{1}{8}$
Now as we know that ${\sin ^2}y + {\cos ^2}y = 1$
$
\Rightarrow {\sin ^2}y + {\left( {\dfrac{1}{8}} \right)^2} = 1 \\
\Rightarrow {\sin ^2}y = 1 - \dfrac{1}{{64}} = \dfrac{{63}}{{64}} \\
\Rightarrow \sin y = \sqrt {\dfrac{{63}}{{64}}} = \sqrt {\dfrac{{7 \times 9}}{{8 \times 8}}} = \dfrac{3}{8}\sqrt 7 \\
$
$ \Rightarrow y = {\sin ^{ - 1}}\dfrac{{3\sqrt 7 }}{8}$
Now substitute this value in equation (1) we have
$ \Rightarrow \sin \left[ {{{\cos }^{ - 1}}\left( {\dfrac{1}{8}} \right)} \right] = \sin \left[ {{{\sin }^{ - 1}}\dfrac{{3\sqrt 7 }}{8}} \right]$
Now the sin and sin inverse is canceled out.
$ \Rightarrow \sin \left[ {2{{\cos }^{ - 1}}\cot \left( {2{{\tan }^{ - 1}}\dfrac{1}{2}} \right)} \right] = \dfrac{{3\sqrt 7 }}{8}$
Hence option (a) is correct.
Note: Whenever we face such type of problems the basics is knowing about the simple inverse trigonometric identities like $2{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}$ and many others are being mentioned above. Such problems are more formula based thus having a good grasp over the identities will help in getting on the right track to reach the answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE