Answer
Verified
469.5k+ views
Hint: First we will convert all angles to the first quadrant using the properties;
\[\sin ({180^o} - x) = \sin x\]
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
$
\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\
\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
$
Complete step-by-step answer:
Given \[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\]
We first use \[\sin ({180^o} - x) = \sin x\], we get,
\[ \Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]\]
\[
\Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
\Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
\]
On Multiplying and dividing by 4, we get,
\[ \Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}\]
Now on using \[2\sin A\sin B = [\cos (A - B) - \cos (A + B)]\], we get,
\[
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\
\]
On using \[\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x\], we get,
On substituting the value of \[\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}\]and \[\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}\]we get,
\[
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\
On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\
\Rightarrow \dfrac{5}{{16}} \\
\]
Hence, option (D) is correct.
Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,
\[
= (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\
= (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\
u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\
= (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
= {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
= {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\
using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\
using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\
putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
= {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\
= {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\
= {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\
= \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\
= \dfrac{{100 - 20}}{{256}} \\
= \dfrac{{80}}{{256}} \\
= \dfrac{5}{{16}} \\
\]
\[\sin ({180^o} - x) = \sin x\]
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
$
\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\
\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
$
Complete step-by-step answer:
Given \[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\]
We first use \[\sin ({180^o} - x) = \sin x\], we get,
\[ \Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]\]
\[
\Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
\Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
\]
On Multiplying and dividing by 4, we get,
\[ \Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}\]
Now on using \[2\sin A\sin B = [\cos (A - B) - \cos (A + B)]\], we get,
\[
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\
\]
On using \[\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x\], we get,
On substituting the value of \[\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}\]and \[\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}\]we get,
\[
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\
On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\
\Rightarrow \dfrac{5}{{16}} \\
\]
Hence, option (D) is correct.
Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,
\[
= (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\
= (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\
u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\
= (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
= {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
= {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\
using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\
using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\
putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
= {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\
= {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\
= {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\
= \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\
= \dfrac{{100 - 20}}{{256}} \\
= \dfrac{{80}}{{256}} \\
= \dfrac{5}{{16}} \\
\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE