Answer
Verified
469.8k+ views
Hint:
The combustion and formation both are opposite processes. Combustion reaction is always exothermic i.e. heat of that reaction is negative then other one can be exothermic or endothermic i.e. heat of reaction can be negative or positive.
Complete step by step answer:
Heat of combustion and heat of formation are basically two kinds of heat of reaction. Heat of reaction is the energy which is released or absorbed during the reaction. This can be calculated from the change of energy between all reactants and all products.
The definition of heat of formation is, the amount of energy change due to the formation of 1 mole of a compound from its constituent elements.
The definition of heat of combustion is, the amount of heat or energy developed due to the total combustion of 1mole of a compound.
Now heat of the combustion reaction of glucose can be calculated on the basis of Hess’ law. Using formula,
\[\Delta H = \sum {\Delta {H_f}(product)} - \sum {\Delta {H_f}({\text{reactant}})} \]
The equation of combustion of graphite is,
\[C + {O_2}\xrightarrow{\Delta }C{O_2},\Delta H = - 395KJ/mole\] ……(1)
This reaction can also be considered as a formation reaction of \[C{O_{2.}}\]
The equation of combustion of \[{{\text{H}}_{\text{2}}}\] is,
\[H{}_2 + \dfrac{1}{2}O{}_2\xrightarrow{\Delta }H{}_2H = - 269KJ/MOLE\] ……(2)
This reaction can also be considered as a formation reaction of \[{H_2}O\]
The equation of formation of glucose is,
\[6C + 6{H_2} + 3{O_2} \to {C_6}{H_{12}}{O_6},\Delta H = - 1169{\text{ }}KJ/mole\] ……(3)
The equation of combustion of glucose is,
\[C{}_6H{}_{12}O{}_6 + 6O{}_2\xrightarrow{\Delta }6CO{}_2 + 6H{}_2O,\Delta H\]
Now according to the Hess’ law, the heat of reaction is,
\[
\Delta H = \sum {\Delta {H_f}(product)} - \sum {\Delta {H_f}({\text{reactant}})} \\
= \sum {6 \times \Delta {H_f}(C{O_2}) + 6 \times } \Delta {H_f}({H_2}O) - \sum {\Delta {H_f}({{\text{C}}_6}{H_{12}}{O_6})} + 6 \times \Delta {H_f}({O_2}) \\
= \sum {6 \times \left( { - 395} \right) + 6 \times } \left( { - 269} \right) - \sum { - 1169} + 0 \\
= \sum { - 2370 - } 1614 + 1169 \\
= - 2815KJ/mole \\
\]
The correct answer is A.
Note:
Remember the formula \[\Delta H = \sum {\Delta {H_f}(product)} - \sum {\Delta {H_f}({\text{reactant}})} \]. The molar heat of combustion is the amount of heat released when one mole of substance is completely burnt.
The combustion and formation both are opposite processes. Combustion reaction is always exothermic i.e. heat of that reaction is negative then other one can be exothermic or endothermic i.e. heat of reaction can be negative or positive.
Complete step by step answer:
Heat of combustion and heat of formation are basically two kinds of heat of reaction. Heat of reaction is the energy which is released or absorbed during the reaction. This can be calculated from the change of energy between all reactants and all products.
The definition of heat of formation is, the amount of energy change due to the formation of 1 mole of a compound from its constituent elements.
The definition of heat of combustion is, the amount of heat or energy developed due to the total combustion of 1mole of a compound.
Now heat of the combustion reaction of glucose can be calculated on the basis of Hess’ law. Using formula,
\[\Delta H = \sum {\Delta {H_f}(product)} - \sum {\Delta {H_f}({\text{reactant}})} \]
The equation of combustion of graphite is,
\[C + {O_2}\xrightarrow{\Delta }C{O_2},\Delta H = - 395KJ/mole\] ……(1)
This reaction can also be considered as a formation reaction of \[C{O_{2.}}\]
The equation of combustion of \[{{\text{H}}_{\text{2}}}\] is,
\[H{}_2 + \dfrac{1}{2}O{}_2\xrightarrow{\Delta }H{}_2H = - 269KJ/MOLE\] ……(2)
This reaction can also be considered as a formation reaction of \[{H_2}O\]
The equation of formation of glucose is,
\[6C + 6{H_2} + 3{O_2} \to {C_6}{H_{12}}{O_6},\Delta H = - 1169{\text{ }}KJ/mole\] ……(3)
The equation of combustion of glucose is,
\[C{}_6H{}_{12}O{}_6 + 6O{}_2\xrightarrow{\Delta }6CO{}_2 + 6H{}_2O,\Delta H\]
Now according to the Hess’ law, the heat of reaction is,
\[
\Delta H = \sum {\Delta {H_f}(product)} - \sum {\Delta {H_f}({\text{reactant}})} \\
= \sum {6 \times \Delta {H_f}(C{O_2}) + 6 \times } \Delta {H_f}({H_2}O) - \sum {\Delta {H_f}({{\text{C}}_6}{H_{12}}{O_6})} + 6 \times \Delta {H_f}({O_2}) \\
= \sum {6 \times \left( { - 395} \right) + 6 \times } \left( { - 269} \right) - \sum { - 1169} + 0 \\
= \sum { - 2370 - } 1614 + 1169 \\
= - 2815KJ/mole \\
\]
The correct answer is A.
Note:
Remember the formula \[\Delta H = \sum {\Delta {H_f}(product)} - \sum {\Delta {H_f}({\text{reactant}})} \]. The molar heat of combustion is the amount of heat released when one mole of substance is completely burnt.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE