
The vectors \[a,b{\text{ and }}c\] are equal in length and taken pairwise, they make equal angles. If \[a = i + j,b = j + k{\text{ and }}c\] makes an obtuse angle with the base vector \[i\]and \[c\] is equal to
A. \[i + k\]
B. \[ - i + 4j - k\]
C. \[ - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k\]
D. \[\dfrac{1}{3}i - \dfrac{4}{3}j + \dfrac{1}{3}k\]
Answer
615.9k+ views
Hint: First of all, find the length of vector \[c\].Then find the angles made by the vectors \[a,b{\text{ and }}c\] taken pair wise to get the equations in terms of components of vector \[c\]. So, use this concept to reach the solution of the given problem.
Complete step-by-step solution -
The length of the vector \[r = xi + yj + zk\] is given by \[\left| r \right| = \sqrt {{x^2} + {y^2} + {z^2}} \].
The length of vector \[a = i + j\] is \[\left| a \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2 \]
The length of vector \[b = j + k\] is \[\left| b \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2 \]
Since three vectors have equal lengths \[\left| c \right| = \sqrt 2 \]
Let vector \[c = {c_1}i + {c_2}j + {c_3}k\]
Since vector \[c\]makes an obtuse angle with \[i\], then the dot product between them is less than zero i.e., \[c.i = {c_1} < 0\]
We know that the angle between the vectors \[x{\text{ and }}y\] is given by \[\theta = {\cos ^{ - 1}}\dfrac{{x.y}}{{\left| x \right|\left| y \right|}}\]
Also given that the angle between the vectors are equal. So, we have
\[{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{a.c}}{{\left| a \right|\left| c \right|}} = {\cos ^{ - 1}}\dfrac{{b.c}}{{\left| b \right|\left| c \right|}}\]
Now consider
\[
\Rightarrow a.b = \left( {i + j} \right).\left( {j + k} \right) = {j^2} = 1 \\
\Rightarrow a.c = \left( {i + j} \right).\left( {{c_1}i + {c_2}j + {c_3}k} \right) = {c_1} + {c_2} \\
\Rightarrow b.c = \left( {j + k} \right).\left( {{c_1}i + {c_2}j + {c_3}k} \right) = {c_2} + {c_3} \\
\]
Taking \[{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{a.c}}{{\left| a \right|\left| c \right|}}\], we have
\[
\Rightarrow {\cos ^{ - 1}}\dfrac{1}{{\sqrt 2 \sqrt 2 }} = {\cos ^{ - 1}}\dfrac{{{c_1} + {c_2}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{{\sqrt 2 \sqrt 2 }} = \dfrac{{{c_1} + {c_2}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{2} = \dfrac{{{c_1} + {c_2}}}{2} \\
\Rightarrow {c_1} + {c_2} = 1 \\
\therefore {c_2} = 1 - {c_1}..................................................\left( 1 \right) \\
\]
Taking \[{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{b.c}}{{\left| b \right|\left| c \right|}}\]
\[
\Rightarrow {\cos ^{ - 1}}\dfrac{1}{{\sqrt 2 \sqrt 2 }} = {\cos ^{ - 1}}\dfrac{{{c_2} + {c_3}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{{\sqrt 2 \sqrt 2 }} = \dfrac{{{c_2} + {c_3}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{2} = \dfrac{{{c_2} + {c_3}}}{2} \\
\Rightarrow {c_2} + {c_3} = 1 \\
\]
From equation (1) we have
\[
\Rightarrow 1 - {c_1} + {c_3} = 1 \\
\therefore {c_3} = {c_1}.................................\left( 2 \right) \\
\]
Since \[\left| c \right| = \sqrt 2 \]
\[ \Rightarrow \sqrt {{{\left( {{c_1}} \right)}^2} + {{\left( {{c_2}} \right)}^2} + {{\left( {{c_3}} \right)}^2}} = \sqrt 2 \]
Squaring on both sides we get
\[ \Rightarrow {\left( {{c_1}} \right)^2} + {\left( {{c_2}} \right)^2} + {\left( {{c_3}} \right)^2} = 2\]
From equation (1) and (2) we het
\[
\Rightarrow {\left( {{c_1}} \right)^2} + {\left( {1 - {c_1}} \right)^2} + {\left( {{c_1}} \right)^2} = 2 \\
\Rightarrow {c_1}^2 + 1 - 2{c_1} + {c_1}^2 + {c_1}^2 = 2 \\
\Rightarrow 3{c_1}^2 - 2{c_1} = 2 - 1 = 1 \\
\Rightarrow 3{c_1}^2 - 3{c_1} + {c_1} - 1 = 0 \\
\]
Taking the common terms, we have
\[
\Rightarrow 3{c_1}\left( {{c_1} - 1} \right) + 1\left( {{c_1} - 1} \right) = 0 \\
\Rightarrow \left( {3{c_1} + 1} \right)\left( {{c_1} - 1} \right) = 0 \\
\therefore {c_1} = 1, - \dfrac{1}{3} \\
\]
Since \[{c_1} < 0\]
The value of \[{c_1}\] is \[ - \dfrac{1}{3}\]
From equation (1) we have
\[
\Rightarrow {c_2} = 1 - \left( { - \dfrac{1}{3}} \right) = 1 + \dfrac{1}{3} \\
\therefore {c_2} = \dfrac{4}{3} \\
\]
From equation (2) we have
\[
\Rightarrow {c_3} = {c_1} = - \dfrac{1}{3} \\
\therefore {c_3} = - \dfrac{1}{3} \\
\]
Hence vector \[c = {c_1}i + {c_2}j + {c_3}k\] is \[c = - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k\]
Thus, the correct option is C. \[ - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k\]
Note: The length of the vector \[r = xi + yj + zk\] is given by \[\left| r \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]. The angle between the vectors \[x{\text{ and }}y\] is given by \[\theta = {\cos ^{ - 1}}\dfrac{{x.y}}{{\left| x \right|\left| y \right|}}\]. The angle made by the two vectors is said to be an obtuse angle when their dot product is less than zero.
Complete step-by-step solution -
The length of the vector \[r = xi + yj + zk\] is given by \[\left| r \right| = \sqrt {{x^2} + {y^2} + {z^2}} \].
The length of vector \[a = i + j\] is \[\left| a \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2 \]
The length of vector \[b = j + k\] is \[\left| b \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2 \]
Since three vectors have equal lengths \[\left| c \right| = \sqrt 2 \]
Let vector \[c = {c_1}i + {c_2}j + {c_3}k\]
Since vector \[c\]makes an obtuse angle with \[i\], then the dot product between them is less than zero i.e., \[c.i = {c_1} < 0\]
We know that the angle between the vectors \[x{\text{ and }}y\] is given by \[\theta = {\cos ^{ - 1}}\dfrac{{x.y}}{{\left| x \right|\left| y \right|}}\]
Also given that the angle between the vectors are equal. So, we have
\[{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{a.c}}{{\left| a \right|\left| c \right|}} = {\cos ^{ - 1}}\dfrac{{b.c}}{{\left| b \right|\left| c \right|}}\]
Now consider
\[
\Rightarrow a.b = \left( {i + j} \right).\left( {j + k} \right) = {j^2} = 1 \\
\Rightarrow a.c = \left( {i + j} \right).\left( {{c_1}i + {c_2}j + {c_3}k} \right) = {c_1} + {c_2} \\
\Rightarrow b.c = \left( {j + k} \right).\left( {{c_1}i + {c_2}j + {c_3}k} \right) = {c_2} + {c_3} \\
\]
Taking \[{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{a.c}}{{\left| a \right|\left| c \right|}}\], we have
\[
\Rightarrow {\cos ^{ - 1}}\dfrac{1}{{\sqrt 2 \sqrt 2 }} = {\cos ^{ - 1}}\dfrac{{{c_1} + {c_2}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{{\sqrt 2 \sqrt 2 }} = \dfrac{{{c_1} + {c_2}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{2} = \dfrac{{{c_1} + {c_2}}}{2} \\
\Rightarrow {c_1} + {c_2} = 1 \\
\therefore {c_2} = 1 - {c_1}..................................................\left( 1 \right) \\
\]
Taking \[{\cos ^{ - 1}}\dfrac{{a.b}}{{\left| a \right|\left| b \right|}} = {\cos ^{ - 1}}\dfrac{{b.c}}{{\left| b \right|\left| c \right|}}\]
\[
\Rightarrow {\cos ^{ - 1}}\dfrac{1}{{\sqrt 2 \sqrt 2 }} = {\cos ^{ - 1}}\dfrac{{{c_2} + {c_3}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{{\sqrt 2 \sqrt 2 }} = \dfrac{{{c_2} + {c_3}}}{{\sqrt 2 \sqrt 2 }} \\
\Rightarrow \dfrac{1}{2} = \dfrac{{{c_2} + {c_3}}}{2} \\
\Rightarrow {c_2} + {c_3} = 1 \\
\]
From equation (1) we have
\[
\Rightarrow 1 - {c_1} + {c_3} = 1 \\
\therefore {c_3} = {c_1}.................................\left( 2 \right) \\
\]
Since \[\left| c \right| = \sqrt 2 \]
\[ \Rightarrow \sqrt {{{\left( {{c_1}} \right)}^2} + {{\left( {{c_2}} \right)}^2} + {{\left( {{c_3}} \right)}^2}} = \sqrt 2 \]
Squaring on both sides we get
\[ \Rightarrow {\left( {{c_1}} \right)^2} + {\left( {{c_2}} \right)^2} + {\left( {{c_3}} \right)^2} = 2\]
From equation (1) and (2) we het
\[
\Rightarrow {\left( {{c_1}} \right)^2} + {\left( {1 - {c_1}} \right)^2} + {\left( {{c_1}} \right)^2} = 2 \\
\Rightarrow {c_1}^2 + 1 - 2{c_1} + {c_1}^2 + {c_1}^2 = 2 \\
\Rightarrow 3{c_1}^2 - 2{c_1} = 2 - 1 = 1 \\
\Rightarrow 3{c_1}^2 - 3{c_1} + {c_1} - 1 = 0 \\
\]
Taking the common terms, we have
\[
\Rightarrow 3{c_1}\left( {{c_1} - 1} \right) + 1\left( {{c_1} - 1} \right) = 0 \\
\Rightarrow \left( {3{c_1} + 1} \right)\left( {{c_1} - 1} \right) = 0 \\
\therefore {c_1} = 1, - \dfrac{1}{3} \\
\]
Since \[{c_1} < 0\]
The value of \[{c_1}\] is \[ - \dfrac{1}{3}\]
From equation (1) we have
\[
\Rightarrow {c_2} = 1 - \left( { - \dfrac{1}{3}} \right) = 1 + \dfrac{1}{3} \\
\therefore {c_2} = \dfrac{4}{3} \\
\]
From equation (2) we have
\[
\Rightarrow {c_3} = {c_1} = - \dfrac{1}{3} \\
\therefore {c_3} = - \dfrac{1}{3} \\
\]
Hence vector \[c = {c_1}i + {c_2}j + {c_3}k\] is \[c = - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k\]
Thus, the correct option is C. \[ - \dfrac{1}{3}i + \dfrac{4}{3}j - \dfrac{1}{3}k\]
Note: The length of the vector \[r = xi + yj + zk\] is given by \[\left| r \right| = \sqrt {{x^2} + {y^2} + {z^2}} \]. The angle between the vectors \[x{\text{ and }}y\] is given by \[\theta = {\cos ^{ - 1}}\dfrac{{x.y}}{{\left| x \right|\left| y \right|}}\]. The angle made by the two vectors is said to be an obtuse angle when their dot product is less than zero.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

