Answer
Verified
461.7k+ views
Hint: To find the vertical angle of a cone, we need to establish a relation between the radius and height of the cone to its slant height. We express the height and radius of the cone in terms of its slant height using the formula of volume of a cone and by applying Pythagoras theorem on one half of the cone and making a relation. Maximum volume is obtained by differentiating the volume.
Complete step by step answer:
Given that,
Let r be the radius and h be the height and $\alpha $ be the vertical angle of the cone.
Slant height, l is given, i.e.
l is constant.
From the figure, we can see that
By applying Pythagoras theorem in $\vartriangle OAB$
$ \Rightarrow {\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}$
$ \Rightarrow {l^2} = {h^2} + {r^2}$
$ \Rightarrow {r^2} = {l^2} - {h^2}$ ……… (i)
We have to show that the volume of the cone is maximum and find the vertical angle $\alpha $
We know that,
Volume of the cone, V = $\dfrac{1}{3}\pi {r^2}h$
Putting the value of r from equation (i),
\[ \Rightarrow V = \dfrac{1}{3}\pi \left( {{l^2} - {h^2}} \right)h\] ………… (ii)
Here, we can see that slant height, l is constant (given), so we will differentiate equation (ii) both sides with respect to h, we will get
\[ \Rightarrow \dfrac{{dV}}{{dh}} = \dfrac{1}{3}\pi \dfrac{d}{{dh}}\left( {{l^2}h - {h^3}} \right)\]
\[ \Rightarrow \dfrac{{dV}}{{dh}} = \dfrac{1}{3}\pi \left( {{l^2} - 3{h^2}} \right)\] ……… (iii)
As we know that,
$\dfrac{{dV}}{{dh}} = 0$ [for maxima and minima].
So, by equating $\dfrac{{dV}}{{dh}} = 0$, we will get
\[ \Rightarrow \dfrac{1}{3}\pi \left( {{l^2} - 3{h^2}} \right) = 0\]
\[ \Rightarrow {l^2} = 3{h^2}\]
Putting the value of l here, we will get
\[ \Rightarrow {h^2} + {r^2} = 3{h^2}\]
\[ \Rightarrow {r^2} = 2{h^2}\]
Taking square root on both sides, we will get
\[ \Rightarrow r = \sqrt 2 h\]
\[ \Rightarrow \dfrac{r}{h} = \sqrt 2 \] ……… (iv)
From $\vartriangle OAB$, we can see that
$ \Rightarrow \tan \alpha = \dfrac{{OB}}{{OA}}$
$ \Rightarrow \tan \alpha = \dfrac{r}{h}$
Putting this value in equation (iv), we will get
$ \Rightarrow \tan \alpha = \sqrt 2 $
\[ \Rightarrow \alpha = {\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
Hence, we get vertical angle, \[\alpha = {\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
Now, from equation (iii), we have
\[ \Rightarrow \dfrac{{dV}}{{dh}} = \dfrac{1}{3}\pi \left( {{l^2} - 3{h^2}} \right)\]
Again, differentiate equation (iii) both sides with respect to h, we will get
\[ \Rightarrow \dfrac{{{d^2}V}}{{d{h^2}}} = \dfrac{1}{3}\pi \dfrac{d}{{dh}}\left( {{l^2} - 3{h^2}} \right)\]
\[ \Rightarrow \dfrac{{{d^2}V}}{{d{h^2}}} = \dfrac{1}{3}\pi \left( { - 6h} \right)\]
\[ \Rightarrow \dfrac{{{d^2}V}}{{d{h^2}}} = - 2\pi h\]
Here we can see that, \[\dfrac{{{d^2}V}}{{d{h^2}}} = - 2\pi h < 0\]
So, we can say that the volume of the cone, V is maximum.
Hence, the vertical angle of the cone with maximum volume and given slant height is \[\alpha = {\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
So, the correct answer is “Option A”.
Note: In order to solve this type of questions the key is to know the formula of volume of a cone and the concept of Pythagoras theorem. Using these two we establish a relation between its length, radius and slant height.
It is an important step to know that the differentiation of a term gives its maximum value. Also, the basic differentiation forms of algebraic terms to be known.
To know the value of trigonometric and inverse trigonometric terms of tan function we refer to its trigonometric table.
Complete step by step answer:
Given that,
Let r be the radius and h be the height and $\alpha $ be the vertical angle of the cone.
Slant height, l is given, i.e.
l is constant.
From the figure, we can see that
By applying Pythagoras theorem in $\vartriangle OAB$
$ \Rightarrow {\left( {AB} \right)^2} = {\left( {OA} \right)^2} + {\left( {OB} \right)^2}$
$ \Rightarrow {l^2} = {h^2} + {r^2}$
$ \Rightarrow {r^2} = {l^2} - {h^2}$ ……… (i)
We have to show that the volume of the cone is maximum and find the vertical angle $\alpha $
We know that,
Volume of the cone, V = $\dfrac{1}{3}\pi {r^2}h$
Putting the value of r from equation (i),
\[ \Rightarrow V = \dfrac{1}{3}\pi \left( {{l^2} - {h^2}} \right)h\] ………… (ii)
Here, we can see that slant height, l is constant (given), so we will differentiate equation (ii) both sides with respect to h, we will get
\[ \Rightarrow \dfrac{{dV}}{{dh}} = \dfrac{1}{3}\pi \dfrac{d}{{dh}}\left( {{l^2}h - {h^3}} \right)\]
\[ \Rightarrow \dfrac{{dV}}{{dh}} = \dfrac{1}{3}\pi \left( {{l^2} - 3{h^2}} \right)\] ……… (iii)
As we know that,
$\dfrac{{dV}}{{dh}} = 0$ [for maxima and minima].
So, by equating $\dfrac{{dV}}{{dh}} = 0$, we will get
\[ \Rightarrow \dfrac{1}{3}\pi \left( {{l^2} - 3{h^2}} \right) = 0\]
\[ \Rightarrow {l^2} = 3{h^2}\]
Putting the value of l here, we will get
\[ \Rightarrow {h^2} + {r^2} = 3{h^2}\]
\[ \Rightarrow {r^2} = 2{h^2}\]
Taking square root on both sides, we will get
\[ \Rightarrow r = \sqrt 2 h\]
\[ \Rightarrow \dfrac{r}{h} = \sqrt 2 \] ……… (iv)
From $\vartriangle OAB$, we can see that
$ \Rightarrow \tan \alpha = \dfrac{{OB}}{{OA}}$
$ \Rightarrow \tan \alpha = \dfrac{r}{h}$
Putting this value in equation (iv), we will get
$ \Rightarrow \tan \alpha = \sqrt 2 $
\[ \Rightarrow \alpha = {\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
Hence, we get vertical angle, \[\alpha = {\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
Now, from equation (iii), we have
\[ \Rightarrow \dfrac{{dV}}{{dh}} = \dfrac{1}{3}\pi \left( {{l^2} - 3{h^2}} \right)\]
Again, differentiate equation (iii) both sides with respect to h, we will get
\[ \Rightarrow \dfrac{{{d^2}V}}{{d{h^2}}} = \dfrac{1}{3}\pi \dfrac{d}{{dh}}\left( {{l^2} - 3{h^2}} \right)\]
\[ \Rightarrow \dfrac{{{d^2}V}}{{d{h^2}}} = \dfrac{1}{3}\pi \left( { - 6h} \right)\]
\[ \Rightarrow \dfrac{{{d^2}V}}{{d{h^2}}} = - 2\pi h\]
Here we can see that, \[\dfrac{{{d^2}V}}{{d{h^2}}} = - 2\pi h < 0\]
So, we can say that the volume of the cone, V is maximum.
Hence, the vertical angle of the cone with maximum volume and given slant height is \[\alpha = {\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
So, the correct answer is “Option A”.
Note: In order to solve this type of questions the key is to know the formula of volume of a cone and the concept of Pythagoras theorem. Using these two we establish a relation between its length, radius and slant height.
It is an important step to know that the differentiation of a term gives its maximum value. Also, the basic differentiation forms of algebraic terms to be known.
To know the value of trigonometric and inverse trigonometric terms of tan function we refer to its trigonometric table.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE