Answer
Verified
473.4k+ views
Hint:
The given sample is a mixture of gases which consist of \[{C_4}{H_{10}}\], \[C{H_4}\] and CO. Now each of these gases contribute to the physical properties of the mixture. They do not contribute to the chemical properties as a whole, because they are still unreactive with each other and form no by products.
Complete step by step answer:
The given gaseous mixture is made up of 3 gases namely, \[{C_4}{H_{10}}\], \[C{H_4}\] and CO. Now, the total volume of the gaseous mixture is said to be 200 ml. Out of this, constitutes about 40% of the total volume of the given gaseous mixture. Hence, to calculate the actual volume of \[{C_4}{H_{10}}\]:
Volume of \[{C_4}{H_{10}}\] = 40 % of the entire gaseous mixture
= \[\dfrac{{40}}{{100}} \times \]volume of the entire gaseous mixture
= 0.4 \[ \times \]200ml
= 80 ml
Now the remainder of the gaseous mixture has a volume of about (200-80) = 120 ml.
The remainder of the gaseous mixture includes the gases \[C{H_4}\] and CO. For the ease of calculation, let us consider the volume of \[C{H_4}\] to be ‘x’ ml. Then the volume of CO will be of whatever remains, i.e ‘120 - x’ ml.
The conditions of the reaction of this gaseous mixture is given that the entire mixture is burnt in the presence of excess of oxygen. Considering that one mole of each constituent molecule is used, the reactions of the constituent gases of the mixture with oxygen can be given by:
\[\mathop {C{H_4}}\limits_{'x'ml} + 2{O_2} \to \mathop {C{0_2}}\limits_{'x'ml} + 2{H_2}O\]
\[\mathop {CO}\limits_{(120 - x)ml} + \dfrac{1}{2}{O_2} \to \mathop {C{O_2}}\limits_{(120 - x)ml} \]
\[\mathop {{C_4}{H_{10}}}\limits_{80ml} + \dfrac{{13}}{2}{O_2} \to \mathop {4C{O_2}}\limits_{4 \times 80 = 320ml} + 5{H_2}O\]
Hence the total volume of carbon dioxide produced can be calculated as:
Total volume of \[C{O_2}\]= (x) + (120-x) + (320) = 120 + 320 = 440 ml
Hence, Option C is the correct option.
Note:
The excess oxygen that has been used in the burning the mixture is responsible for deriving carbon dioxide from each of the constituent gases. In case if the oxygen was supplied in a limited quantity, then all the constituents would not have been fully ignited and hence, the amount of carbon dioxide would be less.
The given sample is a mixture of gases which consist of \[{C_4}{H_{10}}\], \[C{H_4}\] and CO. Now each of these gases contribute to the physical properties of the mixture. They do not contribute to the chemical properties as a whole, because they are still unreactive with each other and form no by products.
Complete step by step answer:
The given gaseous mixture is made up of 3 gases namely, \[{C_4}{H_{10}}\], \[C{H_4}\] and CO. Now, the total volume of the gaseous mixture is said to be 200 ml. Out of this, constitutes about 40% of the total volume of the given gaseous mixture. Hence, to calculate the actual volume of \[{C_4}{H_{10}}\]:
Volume of \[{C_4}{H_{10}}\] = 40 % of the entire gaseous mixture
= \[\dfrac{{40}}{{100}} \times \]volume of the entire gaseous mixture
= 0.4 \[ \times \]200ml
= 80 ml
Now the remainder of the gaseous mixture has a volume of about (200-80) = 120 ml.
The remainder of the gaseous mixture includes the gases \[C{H_4}\] and CO. For the ease of calculation, let us consider the volume of \[C{H_4}\] to be ‘x’ ml. Then the volume of CO will be of whatever remains, i.e ‘120 - x’ ml.
The conditions of the reaction of this gaseous mixture is given that the entire mixture is burnt in the presence of excess of oxygen. Considering that one mole of each constituent molecule is used, the reactions of the constituent gases of the mixture with oxygen can be given by:
\[\mathop {C{H_4}}\limits_{'x'ml} + 2{O_2} \to \mathop {C{0_2}}\limits_{'x'ml} + 2{H_2}O\]
\[\mathop {CO}\limits_{(120 - x)ml} + \dfrac{1}{2}{O_2} \to \mathop {C{O_2}}\limits_{(120 - x)ml} \]
\[\mathop {{C_4}{H_{10}}}\limits_{80ml} + \dfrac{{13}}{2}{O_2} \to \mathop {4C{O_2}}\limits_{4 \times 80 = 320ml} + 5{H_2}O\]
Hence the total volume of carbon dioxide produced can be calculated as:
Total volume of \[C{O_2}\]= (x) + (120-x) + (320) = 120 + 320 = 440 ml
Hence, Option C is the correct option.
Note:
The excess oxygen that has been used in the burning the mixture is responsible for deriving carbon dioxide from each of the constituent gases. In case if the oxygen was supplied in a limited quantity, then all the constituents would not have been fully ignited and hence, the amount of carbon dioxide would be less.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE