Answer
Verified
468.6k+ views
Hint: The energy emitted by the photon during transition is directly proportional to the wavenumber. During transition, when energy is emitted,${{n}_{1}}$will be less than ${{n}_{2}}$, that is transition will be from higher orbital to lower orbital.
Complete answer:
A hydrogen atom consists of an electron orbiting its nucleus. The electromagnetic force between the electron and proton leads to a set of quantum states for the electron, each having its own energy.Spectral emissions occur when an electron jumps, or there is transition of electron from a higher state to a lower state. To distinguish the two states,the higher state is commonly designated as n and the lower state is commonly designated as n’. Energy is emitted when the electron is transitioned from higher state to lower state and energy is absorbed when the electron goes from lower to higher state. The energy emitted corresponds to the energy difference between the two states. Since the energy of the state is fixed, the transition will always produce a photon with the same energy.
The Rydberg formula was given to calculate the energy differences between the level in the bohr model, and hence the wavelengths of emitted/absorbed photons, the Rydberg formula is given as
follows,$\dfrac{1}{\lambda }={{Z}^{2}}R\left( \frac{1}{{{n}_{1}}^{2}}-\dfrac{1}{{{n}_{2}}^{2}} \right)$
Where, R is the Rydberg constant = $109678c{{m}^{-1}}$
Z is the atomic number, taken 1 for hydrogen atom.
${{n}_{1}}$= lower energy state (1 for Lyman series)
${{n}_{2}}$= higher energy state${{n}_{2}}$
Wavelength is reciprocal of wavenumber, therefore, $\dfrac{1}{\lambda }=82200c{{m}^{-1}}$,
Putting the values in the equation, we get,
\[82200=109678\left( \dfrac{1}{{{n}_{1}}^{2}}-\dfrac{1}{{{n}_{2}}^{2}} \right)\]
\[\dfrac{82200}{109678}=\left( \dfrac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}} \right)\]
\[\dfrac{3}{4}=\left( \dfrac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}} \right)\]
\[\dfrac{1}{{{n}_{2}}^{2}}=1-\dfrac{3}{4}=\frac{1}{4}\]
\[\dfrac{1}{{{n}_{2}}^{2}}=1-\dfrac{3}{4}=\frac{1}{4}\]
\[{{n}_{2}}=2\]
Therefore, the electron jumps from the second orbital (${{n}_{2}}$) to ground state (${{n}_{1}}$).
So, the correct answer is “Option B”.
Note: The Lyman series includes the lines due to transitions from an outer orbit n > 1 to the orbit n' = 1.The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2.
Complete answer:
A hydrogen atom consists of an electron orbiting its nucleus. The electromagnetic force between the electron and proton leads to a set of quantum states for the electron, each having its own energy.Spectral emissions occur when an electron jumps, or there is transition of electron from a higher state to a lower state. To distinguish the two states,the higher state is commonly designated as n and the lower state is commonly designated as n’. Energy is emitted when the electron is transitioned from higher state to lower state and energy is absorbed when the electron goes from lower to higher state. The energy emitted corresponds to the energy difference between the two states. Since the energy of the state is fixed, the transition will always produce a photon with the same energy.
The Rydberg formula was given to calculate the energy differences between the level in the bohr model, and hence the wavelengths of emitted/absorbed photons, the Rydberg formula is given as
follows,$\dfrac{1}{\lambda }={{Z}^{2}}R\left( \frac{1}{{{n}_{1}}^{2}}-\dfrac{1}{{{n}_{2}}^{2}} \right)$
Where, R is the Rydberg constant = $109678c{{m}^{-1}}$
Z is the atomic number, taken 1 for hydrogen atom.
${{n}_{1}}$= lower energy state (1 for Lyman series)
${{n}_{2}}$= higher energy state${{n}_{2}}$
Wavelength is reciprocal of wavenumber, therefore, $\dfrac{1}{\lambda }=82200c{{m}^{-1}}$,
Putting the values in the equation, we get,
\[82200=109678\left( \dfrac{1}{{{n}_{1}}^{2}}-\dfrac{1}{{{n}_{2}}^{2}} \right)\]
\[\dfrac{82200}{109678}=\left( \dfrac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}} \right)\]
\[\dfrac{3}{4}=\left( \dfrac{1}{{{n}_{1}}^{2}}-\frac{1}{{{n}_{2}}^{2}} \right)\]
\[\dfrac{1}{{{n}_{2}}^{2}}=1-\dfrac{3}{4}=\frac{1}{4}\]
\[\dfrac{1}{{{n}_{2}}^{2}}=1-\dfrac{3}{4}=\frac{1}{4}\]
\[{{n}_{2}}=2\]
Therefore, the electron jumps from the second orbital (${{n}_{2}}$) to ground state (${{n}_{1}}$).
So, the correct answer is “Option B”.
Note: The Lyman series includes the lines due to transitions from an outer orbit n > 1 to the orbit n' = 1.The Balmer series includes the lines due to transitions from an outer orbit n > 2 to the orbit n' = 2.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE