Answer
Verified
444.6k+ views
Hint:
We first draw the household circuit where the bulb and the geyser are in parallel. So we calculate the resistance of the bulb and the geyser in the circuit and then can calculate the potential across the bulb in the two cases where the switch is on and off. The difference between these two voltages gives the potential drop.
Formula used: In the solution, we will be using the following formula,
$\Rightarrow P = \dfrac{{{V^2}}}{R}$
where $P$ is the power
$V$ is the voltage and $R$ is the resistance.
and ${R_{eq}} = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
where ${R_{eq}}$ is the equivalent resistance of a parallel circuit.
Complete step by step answer:
For this question, we draw the following circuit
As it is a household circuit so the input voltage is 220V. And the bulb and geyser are connected in parallel as it is a household circuit.
The wiring of the house has a resistance of $6\Omega $ so we can take that resistance as in series with bulb and geyser. So the potential across the bulb will be 220V. So we can find the resistance of the bulb as,
$\Rightarrow P = \dfrac{{{V^2}}}{R}$, it can be written as
$\Rightarrow R = \dfrac{{{V^2}}}{P}$
Now for the bulb, $P = 100W$ and $V = 220V$. Substituting that value we get the resistance of the bulb as,
$\Rightarrow {R_{bulb}} = \dfrac{{220 \times 220}}{{100}}$
So calculating we get,
$\Rightarrow {R_{bulb}} = 484\Omega $
For the geyser, the power is, $P = 1000W$ and $V = 220V$. Substituting these values we get the resistance of the geyser as,
$\Rightarrow {R_{geyser}} = \dfrac{{220 \times 220}}{{1000}}$
So, calculating we get
$\Rightarrow {R_{geyser}} = 48.4\Omega $
Now, for the first case, when the switch S is open, there is no current flowing through the geyser. So the total current in the circuit is,
$\Rightarrow I = \dfrac{V}{{{R_{total}}}}$
Here ${R_{total}}$ is the sum of the resistance of the bulb and the resistance of the wires, given by
$\Rightarrow {R_{total}} = 484 + 6 = 490\Omega $
So the current in the circuit is,
$\Rightarrow I = \dfrac{{220}}{{490}} = 0.449A$
Now the potential across the bulb will be ${V_{bulb}} = I{R_{bulb}}$
Substituting the values we get,
$\Rightarrow {V_{bulb}} = 0.449 \times 484$ that is equal to, ${V_{bulb}} = 217.3V$
For the second case, the switch is on.
Therefore the equivalent resistance will be,
$\Rightarrow {R_{eq}} = \dfrac{{{R_{bulb}} \times {R_{geyser}}}}{{{R_{bulb}} + {R_{geyser}}}}$
Substituting the values we get, ${R_{eq}} = \dfrac{{484 \times 48.4}}{{484 + 48.4}}$
This is equal to, ${R_{eq}} = 44\Omega $
And the total resistance in the circuit is ${R_{total}} = \left( {{R_{eq}} + 6} \right)\Omega $
Substituting the values we get, ${R_{total}} = \left( {44 + 6} \right)\Omega = 50\Omega $
So the current in the circuit in this case is $I = \dfrac{{220}}{{50}} = 4.4A$
Therefore the potential across the bulb will be, ${V_{bulb}} = I \times {R_{eq}}$
Substituting values, the potential is, ${V_{bulb}} = 4.4 \times 44 = 193.6V$
So the difference in the potential across the bulb will be the potential drop across the bulb.
So, ${V_{drop}} = \left( {217.3 - 193.6} \right)V$
So the potential drop across the bulb is ${V_{drop}} = 23.7V$ which is equivalent to 24V.
So the correct answer is option (B); 24V.
Note:
In household circuits, the electrical appliances are connected in parallel because this allows every appliance to be switched on and off independently without affecting any other appliance. Moreover, this makes the potential across all the appliances equal to 220V, so the potential drop across every appliance doesn’t affect the power flow to the other appliance.
We first draw the household circuit where the bulb and the geyser are in parallel. So we calculate the resistance of the bulb and the geyser in the circuit and then can calculate the potential across the bulb in the two cases where the switch is on and off. The difference between these two voltages gives the potential drop.
Formula used: In the solution, we will be using the following formula,
$\Rightarrow P = \dfrac{{{V^2}}}{R}$
where $P$ is the power
$V$ is the voltage and $R$ is the resistance.
and ${R_{eq}} = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}$
where ${R_{eq}}$ is the equivalent resistance of a parallel circuit.
Complete step by step answer:
For this question, we draw the following circuit
As it is a household circuit so the input voltage is 220V. And the bulb and geyser are connected in parallel as it is a household circuit.
The wiring of the house has a resistance of $6\Omega $ so we can take that resistance as in series with bulb and geyser. So the potential across the bulb will be 220V. So we can find the resistance of the bulb as,
$\Rightarrow P = \dfrac{{{V^2}}}{R}$, it can be written as
$\Rightarrow R = \dfrac{{{V^2}}}{P}$
Now for the bulb, $P = 100W$ and $V = 220V$. Substituting that value we get the resistance of the bulb as,
$\Rightarrow {R_{bulb}} = \dfrac{{220 \times 220}}{{100}}$
So calculating we get,
$\Rightarrow {R_{bulb}} = 484\Omega $
For the geyser, the power is, $P = 1000W$ and $V = 220V$. Substituting these values we get the resistance of the geyser as,
$\Rightarrow {R_{geyser}} = \dfrac{{220 \times 220}}{{1000}}$
So, calculating we get
$\Rightarrow {R_{geyser}} = 48.4\Omega $
Now, for the first case, when the switch S is open, there is no current flowing through the geyser. So the total current in the circuit is,
$\Rightarrow I = \dfrac{V}{{{R_{total}}}}$
Here ${R_{total}}$ is the sum of the resistance of the bulb and the resistance of the wires, given by
$\Rightarrow {R_{total}} = 484 + 6 = 490\Omega $
So the current in the circuit is,
$\Rightarrow I = \dfrac{{220}}{{490}} = 0.449A$
Now the potential across the bulb will be ${V_{bulb}} = I{R_{bulb}}$
Substituting the values we get,
$\Rightarrow {V_{bulb}} = 0.449 \times 484$ that is equal to, ${V_{bulb}} = 217.3V$
For the second case, the switch is on.
Therefore the equivalent resistance will be,
$\Rightarrow {R_{eq}} = \dfrac{{{R_{bulb}} \times {R_{geyser}}}}{{{R_{bulb}} + {R_{geyser}}}}$
Substituting the values we get, ${R_{eq}} = \dfrac{{484 \times 48.4}}{{484 + 48.4}}$
This is equal to, ${R_{eq}} = 44\Omega $
And the total resistance in the circuit is ${R_{total}} = \left( {{R_{eq}} + 6} \right)\Omega $
Substituting the values we get, ${R_{total}} = \left( {44 + 6} \right)\Omega = 50\Omega $
So the current in the circuit in this case is $I = \dfrac{{220}}{{50}} = 4.4A$
Therefore the potential across the bulb will be, ${V_{bulb}} = I \times {R_{eq}}$
Substituting values, the potential is, ${V_{bulb}} = 4.4 \times 44 = 193.6V$
So the difference in the potential across the bulb will be the potential drop across the bulb.
So, ${V_{drop}} = \left( {217.3 - 193.6} \right)V$
So the potential drop across the bulb is ${V_{drop}} = 23.7V$ which is equivalent to 24V.
So the correct answer is option (B); 24V.
Note:
In household circuits, the electrical appliances are connected in parallel because this allows every appliance to be switched on and off independently without affecting any other appliance. Moreover, this makes the potential across all the appliances equal to 220V, so the potential drop across every appliance doesn’t affect the power flow to the other appliance.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE