The $x$- coordinate of the incenter of the triangle that has the coordinate of mid points of its sides are $(0,1),(1,1)$ and $(1,0)$ is
(A) $2 - \sqrt 2 $
(B) $1 + \sqrt 2 $
(C) $1 - \sqrt 2 $
(D) $2 + \sqrt 2 $
Answer
Verified
443.1k+ views
Hint: The incenter of a triangle is the center of its inscribed circle. Here, the mid points of the sides of the triangle are given. In order to find the incenter of any triangle, we need the coordinates of the triangle and the length of the corresponding sides respectively. So, we need to find the coordinates of the triangle and the length of its sides. The formula of incenter of any triangle is given below:
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Similarly, $y$- coordinate of the incenter of the triangle= $\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}$
Where, $a,b$ and $c$ are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Complete solution step by step:
After plotting the points given in the question, we get a triangle with coordinates $(0,1), (1,1)$ and $(1,0)$.
$(0,1)$ lies on the $y - $axis and is the midpoint of the first side. Extending $1$ unit above and below $y - $ axis from ($0,1)$, we can get two coordinates of the triangle.
Similarly, $(1,0)$ lies on the $x - $ axis and is the midpoint of the second side. Extending $1$ unit left and right on the $x - $ axis from ($0,1)$, we can get the other coordinate.
From $\vartriangle ABC$,
We got the coordinates $A(0,0),B(2,0)$and $C(0,2)$.
Distance between any two points $A({x_1},{y_1})$and $B({x_2},{y_2})$=$\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
$\therefore $length of side $AB$= $\sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Length of side $BC = \sqrt {{{(2 - 0)}^2} + {{(0 - 2)}^2}} = \sqrt {4 + 4} = 2\sqrt 2 $
Length of side $AC = \sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Now, we got all the coordinates and the length of all the sides of the triangle.
We have the formula of incenter:
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Where, $a,b$and $c$are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Here, $a = BC = 2\sqrt 2 $
$b = AC = 2$
$c = AB = 2$
$A({x_1},{y_1}) = A(0,0)$
$B({x_2},{y_2}) = B(2,0)$
$C({x_3},{y_3}) = C(0,2)$
Putting all the values in the formula,
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $\dfrac{{2\sqrt 2 \times 0 + 2 \times 2 + 2 \times 0}}{{2\sqrt 2 + 2 + 2}} = \dfrac{4}{{4 + 2\sqrt 2 }} = \dfrac{2}{{2 + \sqrt 2 }}$
On rationalizing $\dfrac{2}{{2 + \sqrt 2 }}$,
$\dfrac{2}{{2 + \sqrt 2 }} = \dfrac{{2(2 - \sqrt 2 )}}{{(2 + \sqrt 2 )(2 - \sqrt 2 )}} = \dfrac{{2(2 - \sqrt 2 )}}{{{2^2} - {{(\sqrt 2 )}^2}}} = 2 - \sqrt 2 $
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $2 - \sqrt 2 $
Therefore, the correct answer is option (A).
Note:
In this question, we were asked to find the $x - $coordinate of the incenter. But we can find $y - $coordinate also using the formula mentioned in the hint. Substitute the values of $a,b,c$ and the coordinates properly.
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Similarly, $y$- coordinate of the incenter of the triangle= $\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}$
Where, $a,b$ and $c$ are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Complete solution step by step:
After plotting the points given in the question, we get a triangle with coordinates $(0,1), (1,1)$ and $(1,0)$.
$(0,1)$ lies on the $y - $axis and is the midpoint of the first side. Extending $1$ unit above and below $y - $ axis from ($0,1)$, we can get two coordinates of the triangle.
Similarly, $(1,0)$ lies on the $x - $ axis and is the midpoint of the second side. Extending $1$ unit left and right on the $x - $ axis from ($0,1)$, we can get the other coordinate.
From $\vartriangle ABC$,
We got the coordinates $A(0,0),B(2,0)$and $C(0,2)$.
Distance between any two points $A({x_1},{y_1})$and $B({x_2},{y_2})$=$\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
$\therefore $length of side $AB$= $\sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Length of side $BC = \sqrt {{{(2 - 0)}^2} + {{(0 - 2)}^2}} = \sqrt {4 + 4} = 2\sqrt 2 $
Length of side $AC = \sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Now, we got all the coordinates and the length of all the sides of the triangle.
We have the formula of incenter:
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Where, $a,b$and $c$are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Here, $a = BC = 2\sqrt 2 $
$b = AC = 2$
$c = AB = 2$
$A({x_1},{y_1}) = A(0,0)$
$B({x_2},{y_2}) = B(2,0)$
$C({x_3},{y_3}) = C(0,2)$
Putting all the values in the formula,
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $\dfrac{{2\sqrt 2 \times 0 + 2 \times 2 + 2 \times 0}}{{2\sqrt 2 + 2 + 2}} = \dfrac{4}{{4 + 2\sqrt 2 }} = \dfrac{2}{{2 + \sqrt 2 }}$
On rationalizing $\dfrac{2}{{2 + \sqrt 2 }}$,
$\dfrac{2}{{2 + \sqrt 2 }} = \dfrac{{2(2 - \sqrt 2 )}}{{(2 + \sqrt 2 )(2 - \sqrt 2 )}} = \dfrac{{2(2 - \sqrt 2 )}}{{{2^2} - {{(\sqrt 2 )}^2}}} = 2 - \sqrt 2 $
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $2 - \sqrt 2 $
Therefore, the correct answer is option (A).
Note:
In this question, we were asked to find the $x - $coordinate of the incenter. But we can find $y - $coordinate also using the formula mentioned in the hint. Substitute the values of $a,b,c$ and the coordinates properly.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
The southernmost point of the Indian mainland is known class 7 social studies CBSE
List of coprime numbers from 1 to 100 class 7 maths CBSE
In his early days shivaji moved with AJat leaders BMawali class 7 social science CBSE
Write a summary of the poem the quality of mercy by class 7 english CBSE
How did Douglas overcome his fear of water class 7 english CBSE
Find HCF and LCM of 510 and 92 by applying the prime class 7 maths CBSE