
The $x$- coordinate of the incenter of the triangle that has the coordinate of mid points of its sides are $(0,1),(1,1)$ and $(1,0)$ is
(A) $2 - \sqrt 2 $
(B) $1 + \sqrt 2 $
(C) $1 - \sqrt 2 $
(D) $2 + \sqrt 2 $
Answer
453.6k+ views
Hint: The incenter of a triangle is the center of its inscribed circle. Here, the mid points of the sides of the triangle are given. In order to find the incenter of any triangle, we need the coordinates of the triangle and the length of the corresponding sides respectively. So, we need to find the coordinates of the triangle and the length of its sides. The formula of incenter of any triangle is given below:
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Similarly, $y$- coordinate of the incenter of the triangle= $\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}$
Where, $a,b$ and $c$ are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Complete solution step by step:
After plotting the points given in the question, we get a triangle with coordinates $(0,1), (1,1)$ and $(1,0)$.
$(0,1)$ lies on the $y - $axis and is the midpoint of the first side. Extending $1$ unit above and below $y - $ axis from ($0,1)$, we can get two coordinates of the triangle.
Similarly, $(1,0)$ lies on the $x - $ axis and is the midpoint of the second side. Extending $1$ unit left and right on the $x - $ axis from ($0,1)$, we can get the other coordinate.
From $\vartriangle ABC$,
We got the coordinates $A(0,0),B(2,0)$and $C(0,2)$.
Distance between any two points $A({x_1},{y_1})$and $B({x_2},{y_2})$=$\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
$\therefore $length of side $AB$= $\sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Length of side $BC = \sqrt {{{(2 - 0)}^2} + {{(0 - 2)}^2}} = \sqrt {4 + 4} = 2\sqrt 2 $
Length of side $AC = \sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Now, we got all the coordinates and the length of all the sides of the triangle.
We have the formula of incenter:
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Where, $a,b$and $c$are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Here, $a = BC = 2\sqrt 2 $
$b = AC = 2$
$c = AB = 2$
$A({x_1},{y_1}) = A(0,0)$
$B({x_2},{y_2}) = B(2,0)$
$C({x_3},{y_3}) = C(0,2)$
Putting all the values in the formula,
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $\dfrac{{2\sqrt 2 \times 0 + 2 \times 2 + 2 \times 0}}{{2\sqrt 2 + 2 + 2}} = \dfrac{4}{{4 + 2\sqrt 2 }} = \dfrac{2}{{2 + \sqrt 2 }}$
On rationalizing $\dfrac{2}{{2 + \sqrt 2 }}$,
$\dfrac{2}{{2 + \sqrt 2 }} = \dfrac{{2(2 - \sqrt 2 )}}{{(2 + \sqrt 2 )(2 - \sqrt 2 )}} = \dfrac{{2(2 - \sqrt 2 )}}{{{2^2} - {{(\sqrt 2 )}^2}}} = 2 - \sqrt 2 $
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $2 - \sqrt 2 $
Therefore, the correct answer is option (A).
Note:
In this question, we were asked to find the $x - $coordinate of the incenter. But we can find $y - $coordinate also using the formula mentioned in the hint. Substitute the values of $a,b,c$ and the coordinates properly.
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Similarly, $y$- coordinate of the incenter of the triangle= $\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}$
Where, $a,b$ and $c$ are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Complete solution step by step:
After plotting the points given in the question, we get a triangle with coordinates $(0,1), (1,1)$ and $(1,0)$.
$(0,1)$ lies on the $y - $axis and is the midpoint of the first side. Extending $1$ unit above and below $y - $ axis from ($0,1)$, we can get two coordinates of the triangle.
Similarly, $(1,0)$ lies on the $x - $ axis and is the midpoint of the second side. Extending $1$ unit left and right on the $x - $ axis from ($0,1)$, we can get the other coordinate.

From $\vartriangle ABC$,
We got the coordinates $A(0,0),B(2,0)$and $C(0,2)$.
Distance between any two points $A({x_1},{y_1})$and $B({x_2},{y_2})$=$\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
$\therefore $length of side $AB$= $\sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Length of side $BC = \sqrt {{{(2 - 0)}^2} + {{(0 - 2)}^2}} = \sqrt {4 + 4} = 2\sqrt 2 $
Length of side $AC = \sqrt {{{(0 - 2)}^2} + {{(0 - 0)}^2}} = 2$
Now, we got all the coordinates and the length of all the sides of the triangle.
We have the formula of incenter:
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
Where, $a,b$and $c$are the length of sides opposite to the coordinates $A({x_1},{y_1}),B({x_2},{y_2})$and $C({x_3},{y_3})$
Here, $a = BC = 2\sqrt 2 $
$b = AC = 2$
$c = AB = 2$
$A({x_1},{y_1}) = A(0,0)$
$B({x_2},{y_2}) = B(2,0)$
$C({x_3},{y_3}) = C(0,2)$
Putting all the values in the formula,
$x$- coordinate of the incenter of the triangle= $\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}}$
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $\dfrac{{2\sqrt 2 \times 0 + 2 \times 2 + 2 \times 0}}{{2\sqrt 2 + 2 + 2}} = \dfrac{4}{{4 + 2\sqrt 2 }} = \dfrac{2}{{2 + \sqrt 2 }}$
On rationalizing $\dfrac{2}{{2 + \sqrt 2 }}$,
$\dfrac{2}{{2 + \sqrt 2 }} = \dfrac{{2(2 - \sqrt 2 )}}{{(2 + \sqrt 2 )(2 - \sqrt 2 )}} = \dfrac{{2(2 - \sqrt 2 )}}{{{2^2} - {{(\sqrt 2 )}^2}}} = 2 - \sqrt 2 $
$ \Rightarrow $$x$- coordinate of the incenter of the triangle = $2 - \sqrt 2 $
Therefore, the correct answer is option (A).
Note:
In this question, we were asked to find the $x - $coordinate of the incenter. But we can find $y - $coordinate also using the formula mentioned in the hint. Substitute the values of $a,b,c$ and the coordinates properly.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The concept of the poverty line was first given in class 7 social science CBSE

Choose the correct option to fill in the blank with class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

What crosssections do you get when you give a Vertical class 7 maths CBSE
