Answer
Verified
393.6k+ views
Hint: The question revolves around the concepts of permutations and combinations. We are given the number of candidates and voters in an election and we are required to find the number of possible ways of giving votes. According to the fundamental theorem of counting, if there are p ways of doing one thing and q ways of doing another thing, then there are $p \times q$ ways of doing both the things. So, we find out the number of options with each voter and then multiply the number of options with each voter so as to get the required answer.
Complete step-by-step solution:
So, we are given the number of voters as $5$.
Also, the number of candidates in the election is $3$.
(a) Now, voters have to choose a candidate out of these three candidates in the elections.
So, each voter has three options to choose a candidate in the elections.
So, the number of ways in which a voter can choose a candidate in the elections is $3$.
Now, using the fundamental principle of counting, we get
Number of ways in which the votes can be given by the five voters as $3 \times 3 \times 3 \times 3 \times 3$
$ = {3^5} = 243$
Hence, the number of ways in which the votes can be given are $243$.
(b) Now, consider the second situation where the $3$ candidates are among the $5$ voters and they vote for themselves only.
Since the $3$ candidates are among the $5$ voters and they only vote for themselves. So, there is one way for the candidates to choose themselves in the elections.
Now, we will calculate the number of possibilities with the $2$ voters that are not candidates themselves. So, they can vote for any of the $3$ candidates. Hence, they have $3$ options to choose from.
So, the number of ways in which a voter that is not a candidate can choose a candidate in the elections is $3$.
Number of ways in which the votes can be given by the five voters as $1 \times 1 \times 1 \times 3 \times 3$
$ = {3^2} = 9$
Hence, there are $9$ ways of giving votes if the $3$ candidates are among the $5$ voters and they vote for themselves only.
Note: Combination means choosing elements is only that matters, whereas permutation is an ordered combination. The formula used to find combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] . Permutation is a method used to calculate the total outcome of a situation where order is important, the formula used to find permutation is and \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\].
Complete step-by-step solution:
So, we are given the number of voters as $5$.
Also, the number of candidates in the election is $3$.
(a) Now, voters have to choose a candidate out of these three candidates in the elections.
So, each voter has three options to choose a candidate in the elections.
So, the number of ways in which a voter can choose a candidate in the elections is $3$.
Now, using the fundamental principle of counting, we get
Number of ways in which the votes can be given by the five voters as $3 \times 3 \times 3 \times 3 \times 3$
$ = {3^5} = 243$
Hence, the number of ways in which the votes can be given are $243$.
(b) Now, consider the second situation where the $3$ candidates are among the $5$ voters and they vote for themselves only.
Since the $3$ candidates are among the $5$ voters and they only vote for themselves. So, there is one way for the candidates to choose themselves in the elections.
Now, we will calculate the number of possibilities with the $2$ voters that are not candidates themselves. So, they can vote for any of the $3$ candidates. Hence, they have $3$ options to choose from.
So, the number of ways in which a voter that is not a candidate can choose a candidate in the elections is $3$.
Number of ways in which the votes can be given by the five voters as $1 \times 1 \times 1 \times 3 \times 3$
$ = {3^2} = 9$
Hence, there are $9$ ways of giving votes if the $3$ candidates are among the $5$ voters and they vote for themselves only.
Note: Combination means choosing elements is only that matters, whereas permutation is an ordered combination. The formula used to find combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] . Permutation is a method used to calculate the total outcome of a situation where order is important, the formula used to find permutation is and \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE