
There are four different letters and four addressed envelopes, in how many ways can the letter be put in the envelopes so at least one letter goes into the correct envelope.
(A). 15
(B). 24
(C). 9
(D). None of these
Answer
216.6k+ views
Hint: In this question it is given that there are four different letters and four addressed envelopes, so we have to find that in how many ways can the letter be put in the envelopes so at least one letter goes into the correct envelope. So since it is given that at least one of it goes to the correct address i.e, there is a possibility that either 2 letters or 3 letters or 4 letters goes to the correct addressed envelopes. So we have to find the ways for each of the cases.
So find the way we need to know the combination formula, that is, if we want to select r number of quantity from n number of quantity then we can select in $${}^{n}C_{r}$$,
Where, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ and
$$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 2\cdot 1$$
Complete step-by-step solution:
Case-1:(1 letter goes to the correct addressed envelope),
So 1 letter can be put in the right envelope from the available 4 envelopes or we can say that among the 4 envelops 1 correct addressed envelope for a letter, can be chosen in $${}^{4}C_{1}$$ ways.
Where,
$${}^{4}C_{1}$$
$$=\dfrac{4!}{1!\cdot \left( 4-1\right) !}$$
$$=\dfrac{4!}{3!} =\dfrac{4\times 3!}{3!} =4$$ ways
Case-2:(2 letters goes to the correct envelopes)
So similarly we can say that 2 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{2}$$ ways
Where,
$${}^{4}C_{2}$$
$$=\dfrac{4!}{2!\cdot \left( 4-2\right) !} $$
$$=\dfrac{4!}{2!\cdot 2!} =\dfrac{4\times 3\times 2!}{2\times 1\times 2!} =6$$ ways.
Case-3:(3 letters goes to the correct envelopes)
So we can say that 3 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{3}$$ ways.
Where,
$${}^{4}C_{3}$$
$$=\dfrac{4!}{3!\cdot \left( 4-3\right) !} $$
$$=\dfrac{4!}{3!\cdot 1!} =\dfrac{4\times 3!}{3!} =4$$ ways.
Case-4:(3 letters goes to the correct envelopes)
In this case also we can say that 4 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{4}$$ ways = 1 ways,
[Since we know that $${}^{n}C_{n}$$ = 1]
Now since each of the cases are independent upon each other then by fundamental principle of addition we can say that the total number of ways that at least one letter goes into the correct envelope = (4+6+4+1) = 15 ways.
Hence the correct option is option A.
Note: In the solution part we have used a principle, which is called fundamental principle of addition or the rule of sum, so in combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time(independent actions), then there are A + B ways to choose one of the actions.
So find the way we need to know the combination formula, that is, if we want to select r number of quantity from n number of quantity then we can select in $${}^{n}C_{r}$$,
Where, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ and
$$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 2\cdot 1$$
Complete step-by-step solution:
Case-1:(1 letter goes to the correct addressed envelope),
So 1 letter can be put in the right envelope from the available 4 envelopes or we can say that among the 4 envelops 1 correct addressed envelope for a letter, can be chosen in $${}^{4}C_{1}$$ ways.
Where,
$${}^{4}C_{1}$$
$$=\dfrac{4!}{1!\cdot \left( 4-1\right) !}$$
$$=\dfrac{4!}{3!} =\dfrac{4\times 3!}{3!} =4$$ ways
Case-2:(2 letters goes to the correct envelopes)
So similarly we can say that 2 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{2}$$ ways
Where,
$${}^{4}C_{2}$$
$$=\dfrac{4!}{2!\cdot \left( 4-2\right) !} $$
$$=\dfrac{4!}{2!\cdot 2!} =\dfrac{4\times 3\times 2!}{2\times 1\times 2!} =6$$ ways.
Case-3:(3 letters goes to the correct envelopes)
So we can say that 3 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{3}$$ ways.
Where,
$${}^{4}C_{3}$$
$$=\dfrac{4!}{3!\cdot \left( 4-3\right) !} $$
$$=\dfrac{4!}{3!\cdot 1!} =\dfrac{4\times 3!}{3!} =4$$ ways.
Case-4:(3 letters goes to the correct envelopes)
In this case also we can say that 4 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{4}$$ ways = 1 ways,
[Since we know that $${}^{n}C_{n}$$ = 1]
Now since each of the cases are independent upon each other then by fundamental principle of addition we can say that the total number of ways that at least one letter goes into the correct envelope = (4+6+4+1) = 15 ways.
Hence the correct option is option A.
Note: In the solution part we have used a principle, which is called fundamental principle of addition or the rule of sum, so in combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time(independent actions), then there are A + B ways to choose one of the actions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

