
There are ‘n’ A.M.s between 3 and 17. The ratio of the last mean to the first mean is 3:1 .find the value of n.
Answer
523.3k+ views
Hint: We have given n arithmetic means between 3 and 17 that means we have an AP of n+2 terms where first term is 3 and last term is 17. And use the data given in question to proceed further.
Complete step-by-step answer:
Let ‘n’ A.M.s be ${A_1},{A_2},{A_3}, \ldots ,{A_n}$
So we have the given A.P is
$3,{A_1},{A_2}, \ldots ,{A_n},17$
In our case we have
${a_n} = 17,a = 3$ and number of terms = (n+2)
$\because {a_n} = a + \left( {n - 1} \right)d$
$
17 = 3 + \left[ {\left( {n + 2} \right) - 1} \right]d \\
17 - 3 = \left( {n + 1} \right)d \\
\therefore d = \dfrac{{14}}{{\left( {n + 1} \right)}} \\
$
Now
$
{A_1} = a + d = 3 + \dfrac{{14}}{{n + 1}} \\
{A_n} = a + nd = 3 + n\dfrac{{14}}{{n + 1}} \\
$
As given in question,
$
\dfrac{{{A_n}}}{{{A_1}}} = \dfrac{3}{1} \\
\Rightarrow \dfrac{{3 + \dfrac{{14n}}{{n + 1}}}}{{3 + \dfrac{{14}}{{n + 1}}}} = 3 \\
$
$
\Rightarrow \dfrac{{3\left( {n + 1} \right) + 14n}}{{3\left( {n + 1} \right) + 14}} = 3 \\
\Rightarrow \dfrac{{17n + 3}}{{3n + 17}} = 3 \\
\Rightarrow 17n + 3 = 3\left( {3n + 17} \right). \\
\Rightarrow 17n + 3 = 9n + 51 \\
\Rightarrow 8n = 48 \Rightarrow n = 6 \\ $
Note: Whenever you get this type of question the key concept of solving is you have to solve like an AP of n+2 terms and simple mathematics to use the data given in question and use the formula of finding the last term of AP to get an answer.
Complete step-by-step answer:
Let ‘n’ A.M.s be ${A_1},{A_2},{A_3}, \ldots ,{A_n}$
So we have the given A.P is
$3,{A_1},{A_2}, \ldots ,{A_n},17$
In our case we have
${a_n} = 17,a = 3$ and number of terms = (n+2)
$\because {a_n} = a + \left( {n - 1} \right)d$
$
17 = 3 + \left[ {\left( {n + 2} \right) - 1} \right]d \\
17 - 3 = \left( {n + 1} \right)d \\
\therefore d = \dfrac{{14}}{{\left( {n + 1} \right)}} \\
$
Now
$
{A_1} = a + d = 3 + \dfrac{{14}}{{n + 1}} \\
{A_n} = a + nd = 3 + n\dfrac{{14}}{{n + 1}} \\
$
As given in question,
$
\dfrac{{{A_n}}}{{{A_1}}} = \dfrac{3}{1} \\
\Rightarrow \dfrac{{3 + \dfrac{{14n}}{{n + 1}}}}{{3 + \dfrac{{14}}{{n + 1}}}} = 3 \\
$
$
\Rightarrow \dfrac{{3\left( {n + 1} \right) + 14n}}{{3\left( {n + 1} \right) + 14}} = 3 \\
\Rightarrow \dfrac{{17n + 3}}{{3n + 17}} = 3 \\
\Rightarrow 17n + 3 = 3\left( {3n + 17} \right). \\
\Rightarrow 17n + 3 = 9n + 51 \\
\Rightarrow 8n = 48 \Rightarrow n = 6 \\ $
Note: Whenever you get this type of question the key concept of solving is you have to solve like an AP of n+2 terms and simple mathematics to use the data given in question and use the formula of finding the last term of AP to get an answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

