Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

There are two examination rooms A and B. If 10 candidates are sent from A to B, the number of students in each room is the same. If 20 candidates are sent from B to A, the number of students in A is double the number of students in B. Find the number of students in each room.

Answer
VerifiedVerified
444.7k+ views
like imagedislike image
Hint- Assume the number of students in respective rooms to be two different variables, and compute them.

Let, the number of students in room A and B are x and y respectively.
Then it is given if 10 candidates are sent from A to B, the number of students in each room is the same.
Thus x10=y+10
xy=20…………………. (1)
Now it is also given that if 20 candidates are sent from B to A, the number of students in A is double the number of students in B
x+20=2(y20)
x2y=60………………………….. (2)
Now let’s solve equation (1) and equation (2)
xy=20……………………… (1)
x2y=60…………………. (2)
Now in equation (1) multiply by 2 on both side, we get
2x2y=40………………. (3)
Subtract equation (3) and equation (2)
2x2yx+2y=40+60
x=100
Now substitute the value of x in equation (1) we get
100y=20y=80
The number of students in room A is 100 and the number of students in room B is 80.

Note- In such types of questions, just focus on how many numbers (as in this question there are given numbers of students) are shifted where, according to them, make equations and solve them to obtain the variables. This will give the correct answer.
WhatsApp Banner