Answer
Verified
435k+ views
Hint: Two liquids of densities do not mix with each other and are at equilibrium at the interface. Using Bernoulli’s equation, we can calculate the pressure of each liquid. As they are at equilibrium at the interface, pressure due to both liquids will be equal and opposite.
Formulas Used:
$P={{P}_{o}}+\rho gh$
Complete answer:
Given two liquids of density ${{d}_{1}}\,\text{and}\,{{d}_{2}}$ are filled in a tube and do not mix with each other. Both subtend an angle ${{90}^{o}}$ at the centre.
At the interface, both liquids are at equilibrium. Therefore, the pressure due to both liquids is equal at the interface.
According to Bernoulli’s theorem, the pressure due to liquids is-
$P={{P}_{o}}+\rho gh$ ---- (1)
Here,$P$ is pressure due to the liquid
${{P}_{o}}$ is atmospheric pressure
$\rho $ is density of the liquid
$g$ is acceleration due to gravity
$h$ is its height
For liquid-1,
From the figure, we can see that,
$\begin{align}
& y=R\sin \alpha \\
& y'=R\cos \alpha \\
\end{align}$
So the height of liquid with density${{d}_{2}}$will be-$R(\sin \alpha +\cos \alpha )$
From eq (1), the pressure of liquid will be-
${{P}_{2}}={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha )$ ---- (2)
Form the above figure, we can see that,
$\begin{align}
& y'=R\cos \alpha \\
& Y=R\sin \alpha \\
\end{align}$
So the height of liquid with density${{d}_{1}}$will be-$R(\cos \alpha -\sin \alpha )$
From eq (1), the pressure of the liquid is-
${{P}_{1}}={{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )$ ---- (3)
At the interface pressure is same, therefore equating eq (2) and eq (3), we get,
$\begin{align}
& {{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha ) \\
& \Rightarrow {{d}_{1}}(\cos \alpha -\sin \alpha )={{d}_{2}}(\sin \alpha +\cos \alpha ) \\
& \Rightarrow \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{\sin \alpha +\cos \alpha }{\cos \alpha -\sin \alpha } \\
\end{align}$
Dividing the above equation by$\cos \alpha $, we get,
$\therefore \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{1+\tan \alpha }{1-\tan \alpha }$
The ratio of $\dfrac{{{d}_{1}}}{{{d}_{2}}}$is$\dfrac{1+\tan \alpha }{1-\tan \alpha }$.
Hence, the correct option is (A).
Note:
Pressure due to a fluid is the force exerted by it per unit area. A fluid enclosed in a container exerts pressure in all the directions. Bernoulli’s principle says that when the velocity of fluid increases, its potential energy decreases. Bernoulli's principle follows the law of conservation of energy, i.e. sum of all energies possessed by the flowing fluid is constant.
Formulas Used:
$P={{P}_{o}}+\rho gh$
Complete answer:
Given two liquids of density ${{d}_{1}}\,\text{and}\,{{d}_{2}}$ are filled in a tube and do not mix with each other. Both subtend an angle ${{90}^{o}}$ at the centre.
At the interface, both liquids are at equilibrium. Therefore, the pressure due to both liquids is equal at the interface.
According to Bernoulli’s theorem, the pressure due to liquids is-
$P={{P}_{o}}+\rho gh$ ---- (1)
Here,$P$ is pressure due to the liquid
${{P}_{o}}$ is atmospheric pressure
$\rho $ is density of the liquid
$g$ is acceleration due to gravity
$h$ is its height
For liquid-1,
From the figure, we can see that,
$\begin{align}
& y=R\sin \alpha \\
& y'=R\cos \alpha \\
\end{align}$
So the height of liquid with density${{d}_{2}}$will be-$R(\sin \alpha +\cos \alpha )$
From eq (1), the pressure of liquid will be-
${{P}_{2}}={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha )$ ---- (2)
Form the above figure, we can see that,
$\begin{align}
& y'=R\cos \alpha \\
& Y=R\sin \alpha \\
\end{align}$
So the height of liquid with density${{d}_{1}}$will be-$R(\cos \alpha -\sin \alpha )$
From eq (1), the pressure of the liquid is-
${{P}_{1}}={{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )$ ---- (3)
At the interface pressure is same, therefore equating eq (2) and eq (3), we get,
$\begin{align}
& {{P}_{0}}+{{d}_{1}}gR(\cos \alpha -\sin \alpha )={{P}_{0}}+{{d}_{2}}gR(\sin \alpha +\cos \alpha ) \\
& \Rightarrow {{d}_{1}}(\cos \alpha -\sin \alpha )={{d}_{2}}(\sin \alpha +\cos \alpha ) \\
& \Rightarrow \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{\sin \alpha +\cos \alpha }{\cos \alpha -\sin \alpha } \\
\end{align}$
Dividing the above equation by$\cos \alpha $, we get,
$\therefore \dfrac{{{d}_{1}}}{{{d}_{2}}}=\dfrac{1+\tan \alpha }{1-\tan \alpha }$
The ratio of $\dfrac{{{d}_{1}}}{{{d}_{2}}}$is$\dfrac{1+\tan \alpha }{1-\tan \alpha }$.
Hence, the correct option is (A).
Note:
Pressure due to a fluid is the force exerted by it per unit area. A fluid enclosed in a container exerts pressure in all the directions. Bernoulli’s principle says that when the velocity of fluid increases, its potential energy decreases. Bernoulli's principle follows the law of conservation of energy, i.e. sum of all energies possessed by the flowing fluid is constant.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE