
There is only one way to choose real number M and N such that when the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ is divided by polynomial ${x^2} + 1$ the remainder is 0. If M and N assume these unique values then M-N:
$ {\text{A}}{\text{. 6}} \\
{\text{B}}{\text{. - 2}} \\
{\text{C}}{\text{. 6}} \\
{\text{D}}{\text{. 2}} \\ $
Answer
489.9k+ views
Hint: Substitute i and –i in the polynomial. From these substitutions we obtain 2 expressions. By equating those expressions to 0 and making the coefficients null get the values of M and N.
Formula Used:
$
{i^1} = i \\
{i^2} = - 1 \\
{i^3} = - i \\
{i^4} = 1 \\ $
Complete step-by-step answer:
The divisor is x2 + 1 so, the values of x obtained are:
$ {x^2} + 1 = 0 \\
{x^2} = - 1 \\
x = i, - i $
The values of the divisor can be substituted in the polynomial as
$p(x) = q(x).g(x) + r(x)$
Where, p(x)= dividend, q(x)=quotient, g(x)=divisor and r(x)=remainder
To get the values of x we equate g(x) with 0. Now, if we substitute the value of x at LHS and RHS then, g(x) becomes 0. Hence $g(x).q(x)=0$ So, then we are left with, $p(x)=r(x)$.
Substitute these values in the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ we get for x = i
$5{i^4} + 4{i^3} + 3{i^2} + Mi + N$
$5 + (-4i) + (-3) + Mi + N$
Collecting the terms with iota and without iota $ (M-4)i + (N+2)$
Similarly on putting $x = -i$, we get
$5{\left( { - i} \right)^4} + 4{\left( { - i} \right)^3} + 3{\left( { - i} \right)^2} + M\left( { - i} \right) + N$
$5 +4i + (-3)- Mi + N$
Collecting the terms with iota and without iota- $(-M+4)i + (N+2)$
Which is $[- (M-4)i] + [(N+2)]$
So, we observe that the 2 expressions are just the same. So, just equating to 0 as is given in the question that the remainder must be 0.
$(M-4)i + (N+2)=0$
We have $(M-4)i = 0$, gives $M=4$ and $(N+2)=0$ gives $N= -2$.
$M=4$ and $N= -2$ are the required values.
Note: Another way to solve the same numerical is by dividing the given polynomial by ${x^2} + 1$ and then equating the remainder obtained to 0 as is stated in the question.
But division a polynomial by polynomial will be a longer approach that’s why we don’t consider this method.
Formula Used:
$
{i^1} = i \\
{i^2} = - 1 \\
{i^3} = - i \\
{i^4} = 1 \\ $
Complete step-by-step answer:
The divisor is x2 + 1 so, the values of x obtained are:
$ {x^2} + 1 = 0 \\
{x^2} = - 1 \\
x = i, - i $
The values of the divisor can be substituted in the polynomial as
$p(x) = q(x).g(x) + r(x)$
Where, p(x)= dividend, q(x)=quotient, g(x)=divisor and r(x)=remainder
To get the values of x we equate g(x) with 0. Now, if we substitute the value of x at LHS and RHS then, g(x) becomes 0. Hence $g(x).q(x)=0$ So, then we are left with, $p(x)=r(x)$.
Substitute these values in the polynomial $5{x^4} + 4{x^3} + 3{x^2} + {\text{M}}{\text{.x + N}}$ we get for x = i
$5{i^4} + 4{i^3} + 3{i^2} + Mi + N$
$5 + (-4i) + (-3) + Mi + N$
Collecting the terms with iota and without iota $ (M-4)i + (N+2)$
Similarly on putting $x = -i$, we get
$5{\left( { - i} \right)^4} + 4{\left( { - i} \right)^3} + 3{\left( { - i} \right)^2} + M\left( { - i} \right) + N$
$5 +4i + (-3)- Mi + N$
Collecting the terms with iota and without iota- $(-M+4)i + (N+2)$
Which is $[- (M-4)i] + [(N+2)]$
So, we observe that the 2 expressions are just the same. So, just equating to 0 as is given in the question that the remainder must be 0.
$(M-4)i + (N+2)=0$
We have $(M-4)i = 0$, gives $M=4$ and $(N+2)=0$ gives $N= -2$.
$M=4$ and $N= -2$ are the required values.
Note: Another way to solve the same numerical is by dividing the given polynomial by ${x^2} + 1$ and then equating the remainder obtained to 0 as is stated in the question.
But division a polynomial by polynomial will be a longer approach that’s why we don’t consider this method.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
For Frost what do fire and ice stand for Here are some class 10 english CBSE

What did the military generals do How did their attitude class 10 english CBSE

List three states in India where earthquakes are more class 10 physics CBSE

What did being free mean to Mandela as a boy and as class 10 english CBSE

What did Valli find about the bus journey How did she class 10 english CBSE

Can you say how 10th May is an Autumn day in South class 10 english CBSE
