
Three coins are tossed together to find the probability of getting:
(i) exactly two heads
(ii) at most two heads
(iii) at least one head and one tail
(iv) no tails
Answer
425.8k+ views
Hint: Before attempting this question one should have prior knowledge about the concept of probability and also remember that Probability of happening of an event= \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\], using this information can help you to approach the solution of the problem.
Complete step-by-step solution:
According to the given information, we know that 3 coins are tossed together
Also, we know that when three coins are tossed simultaneously, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
Probability for exactly two heads
Let X be the event of getting exactly two heads.
So, the number of favorable cases is (HHT, HTH, THH)
Therefore n(X) = 3
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (X) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(X)= $\dfrac{3}{8}$
Probability of at most two heads
Let Y be the event of getting at most two heads
Therefore, no. of favorable cases is (HHT, HTH, TTT, THH, TTH, THT, HTT)
So, n(Y)=7
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Y) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(Y) = $\dfrac{7}{8}$
Probability for at least one head and one tail
Let Z be the event of getting at least one head and one tail
Therefore, no. of favorable events, = (HHT, HTH, THH, TTH, THT, HTT)
So, n(Z)=6
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Z) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P (Z) =$\dfrac{6}{8} = \dfrac{3}{4}$
Probability for no tails
Let A be the event of getting no tails
Therefore, no. of favorable events = (HHH)
So, n(A)=1
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (A) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(A) = $\dfrac{1}{8}$
Note: In the above question we knew that three coins are tossed also we know that when we toss one coin there are only two outcomes either head or tails since in this case we have to toss three coins simultaneously we found the total outcomes possible in this case which we found that 8 are the total outcomes by using the basic reasoning language that one coin can show only head or tail at a time so the outcomes we got for the three coins was (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT) then for each given case we used the formula of Probability of happening of an event which is given by \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\].
Complete step-by-step solution:
According to the given information, we know that 3 coins are tossed together
Also, we know that when three coins are tossed simultaneously, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
Probability for exactly two heads
Let X be the event of getting exactly two heads.
So, the number of favorable cases is (HHT, HTH, THH)
Therefore n(X) = 3
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (X) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(X)= $\dfrac{3}{8}$
Probability of at most two heads
Let Y be the event of getting at most two heads
Therefore, no. of favorable cases is (HHT, HTH, TTT, THH, TTH, THT, HTT)
So, n(Y)=7
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Y) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(Y) = $\dfrac{7}{8}$
Probability for at least one head and one tail
Let Z be the event of getting at least one head and one tail
Therefore, no. of favorable events, = (HHT, HTH, THH, TTH, THT, HTT)
So, n(Z)=6
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Z) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P (Z) =$\dfrac{6}{8} = \dfrac{3}{4}$
Probability for no tails
Let A be the event of getting no tails
Therefore, no. of favorable events = (HHH)
So, n(A)=1
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (A) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(A) = $\dfrac{1}{8}$
Note: In the above question we knew that three coins are tossed also we know that when we toss one coin there are only two outcomes either head or tails since in this case we have to toss three coins simultaneously we found the total outcomes possible in this case which we found that 8 are the total outcomes by using the basic reasoning language that one coin can show only head or tail at a time so the outcomes we got for the three coins was (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT) then for each given case we used the formula of Probability of happening of an event which is given by \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
