Answer
Verified
441.3k+ views
Hint: Diffusing thermal energy within one material or between materials in contact is called thermal conductivity. In thermal conduction, the heat directly is proportional to the area of cross section. Apply the formula to determine the thermal conductivity. Then using that determines the rate of flow through the copper rod.
Formula used:
$\dfrac{{\vartriangle Q}}{{\vartriangle T}} = \dfrac{{KA\left( {{T_1} - {T_2}} \right)}}{x}$
$K,A,Q$ are the coefficient of thermal conductivity, area of cross section and the heat transferred.
Complete step by step answer:
Diffusing thermal energy within one material or between materials in contact is called thermal conductivity.
As the temperature increases in an object then the kinetic energy also increases.
This results in the collisions between molecules distributions. The main mode of heat transfer in between the solids is conduction.
In thermal conduction, the heat directly is proportional to the area of cross section. It is proportional to the change in temperature.
Greater the molecular agitation greater is the heat conduction.
A substance is said to be a good conductor of heat if the value of coefficient of thermal conductivity is large. Silver is the best conductor of heat among all the materials.
Gases are less efficient conductors than the liquid. Conductor increases when the resistance of the body decreases. Conductors are the main mode of heat transfer in case of solids.
$ \Rightarrow \dfrac{{\vartriangle Q}}{{\vartriangle T}} = \dfrac{{KA\left( {{T_1} - {T_2}} \right)}}{x}$
According the thermal conductivity,
$ \Rightarrow \dfrac{{d{Q_1}}}{{dt}} = \dfrac{{d{Q_2}}}{{dt}} = \dfrac{{d{Q_2}}}{{dt}} + \dfrac{{d{Q_3}}}{{dt}}$
Putting the values and we get,
$ \Rightarrow \dfrac{{0.92\left( {100 - T} \right)}}{{46}} = \dfrac{{0.26\left( {T - 0} \right)}}{{13}} + \dfrac{{0.12\left( {T - 0} \right)}}{{12}}$
Since, $T = {40^0}C$
$ \Rightarrow \dfrac{{d{Q_1}}}{{dt}} = \dfrac{{0.92 \times 4\left( {100 - 40} \right)}}{{40}} = 4.8cal/s$
Hence, the correct answer is option (A).
Note: For heat exchangers, the thermal conductors are very essential and they allow heat to be exchanged between liquids without mixing them.
The heat produced is transferred by thermal conduction. A substance is said to be a good conductor of heat if the value of coefficient of thermal conductivity is large.
Formula used:
$\dfrac{{\vartriangle Q}}{{\vartriangle T}} = \dfrac{{KA\left( {{T_1} - {T_2}} \right)}}{x}$
$K,A,Q$ are the coefficient of thermal conductivity, area of cross section and the heat transferred.
Complete step by step answer:
Diffusing thermal energy within one material or between materials in contact is called thermal conductivity.
As the temperature increases in an object then the kinetic energy also increases.
This results in the collisions between molecules distributions. The main mode of heat transfer in between the solids is conduction.
In thermal conduction, the heat directly is proportional to the area of cross section. It is proportional to the change in temperature.
Greater the molecular agitation greater is the heat conduction.
A substance is said to be a good conductor of heat if the value of coefficient of thermal conductivity is large. Silver is the best conductor of heat among all the materials.
Gases are less efficient conductors than the liquid. Conductor increases when the resistance of the body decreases. Conductors are the main mode of heat transfer in case of solids.
$ \Rightarrow \dfrac{{\vartriangle Q}}{{\vartriangle T}} = \dfrac{{KA\left( {{T_1} - {T_2}} \right)}}{x}$
According the thermal conductivity,
$ \Rightarrow \dfrac{{d{Q_1}}}{{dt}} = \dfrac{{d{Q_2}}}{{dt}} = \dfrac{{d{Q_2}}}{{dt}} + \dfrac{{d{Q_3}}}{{dt}}$
Putting the values and we get,
$ \Rightarrow \dfrac{{0.92\left( {100 - T} \right)}}{{46}} = \dfrac{{0.26\left( {T - 0} \right)}}{{13}} + \dfrac{{0.12\left( {T - 0} \right)}}{{12}}$
Since, $T = {40^0}C$
$ \Rightarrow \dfrac{{d{Q_1}}}{{dt}} = \dfrac{{0.92 \times 4\left( {100 - 40} \right)}}{{40}} = 4.8cal/s$
Hence, the correct answer is option (A).
Note: For heat exchangers, the thermal conductors are very essential and they allow heat to be exchanged between liquids without mixing them.
The heat produced is transferred by thermal conduction. A substance is said to be a good conductor of heat if the value of coefficient of thermal conductivity is large.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE