Answer
Verified
113.1k+ views
Hint To find the power consumption for the given circuit, first we calculate the individual resistances of each bulb then as the bulbs are connected in series, we can find the equivalent resistance of the complete circuit. Using equivalent resistance and the voltage of the complete circuit, power can be easily calculated.
Formula used:
$P = \dfrac{{{V^2}}}{R}$
Where P stands for the power, V stands for the voltage and R stands for the resistance.
Complete step by step answer
Let us first consider the ${B_1}$.
The voltage of the bulb ${B_1}$ is given as, ${V_1} = 110V$
Power of the bulb ${B_1}$ is given as, ${P_1} = 100W$
The resistance of the bulb ${B_1}$ can be calculated as, ${R_1} = \dfrac{{{V_1}^2}}{{{P_1}}}$
$ \Rightarrow {R_1} = \dfrac{{{{110}^2}}}{{100}}$
$ \Rightarrow {R_1} = \dfrac{{110 \times 110}}{{100}}$
$ \Rightarrow {R_1} = 121\Omega $
Now, let us consider the second bulb, ${B_2}$.
The voltage of the bulb ${B_2}$ is given as, ${V_2} = 220V$
Power of the bulb ${B_2}$ is given as, ${P_2} = \dfrac{{400}}{3}W$
The resistance of the bulb ${B_2}$ can be calculated as, ${R_2} = \dfrac{{{V_2}^2}}{{{P_2}}}$
$ \Rightarrow {R_2} = \dfrac{{{{220}^2}}}{{\dfrac{{400}}{3}}}$
$ \Rightarrow {R_2} = \dfrac{{220 \times 220 \times 3}}{{400}}$
$ \Rightarrow {R_2} = 363\Omega $
As we can see in the circuit, the bulbs ${B_1}$ and ${B_2}$ are connected in series.
So, the equivalent resistance of the circuit can be given as, ${R_{eq}} = {R_1} + {R_2}$
${R_{eq}} = (121 + 363)\Omega $
${R_{eq}} = 484\Omega $
The voltage of the complete circuit, $V = 220V$
Total power consumption for the given circuit, $P = \dfrac{{{V^2}}}{{{R_{eq}}}}$
$ \Rightarrow P = \dfrac{{{{220}^2}}}{{484}}$
$ \Rightarrow P = \dfrac{{220 \times 220}}{{484}}$
$ \Rightarrow P = 100W$
So, the total power consumption for the given circuit is $100\;W$.
Hence, The correct answer is option (C) $100\;W$.
Note There are two formulae to calculate the power of a given circuit:
1. $P = {I^2}R$, where I stands for the current and R stands for the resistance
2. $P = \dfrac{{{V^2}}}{R}$ , where V stands for the voltage and R stands for the resistance
We use these formulae depending on the quantities provided to us in the question. Here, the voltages of individual bulbs and also the voltage of the complete circuit are given to us, so we have used the second formula.
Formula used:
$P = \dfrac{{{V^2}}}{R}$
Where P stands for the power, V stands for the voltage and R stands for the resistance.
Complete step by step answer
Let us first consider the ${B_1}$.
The voltage of the bulb ${B_1}$ is given as, ${V_1} = 110V$
Power of the bulb ${B_1}$ is given as, ${P_1} = 100W$
The resistance of the bulb ${B_1}$ can be calculated as, ${R_1} = \dfrac{{{V_1}^2}}{{{P_1}}}$
$ \Rightarrow {R_1} = \dfrac{{{{110}^2}}}{{100}}$
$ \Rightarrow {R_1} = \dfrac{{110 \times 110}}{{100}}$
$ \Rightarrow {R_1} = 121\Omega $
Now, let us consider the second bulb, ${B_2}$.
The voltage of the bulb ${B_2}$ is given as, ${V_2} = 220V$
Power of the bulb ${B_2}$ is given as, ${P_2} = \dfrac{{400}}{3}W$
The resistance of the bulb ${B_2}$ can be calculated as, ${R_2} = \dfrac{{{V_2}^2}}{{{P_2}}}$
$ \Rightarrow {R_2} = \dfrac{{{{220}^2}}}{{\dfrac{{400}}{3}}}$
$ \Rightarrow {R_2} = \dfrac{{220 \times 220 \times 3}}{{400}}$
$ \Rightarrow {R_2} = 363\Omega $
As we can see in the circuit, the bulbs ${B_1}$ and ${B_2}$ are connected in series.
So, the equivalent resistance of the circuit can be given as, ${R_{eq}} = {R_1} + {R_2}$
${R_{eq}} = (121 + 363)\Omega $
${R_{eq}} = 484\Omega $
The voltage of the complete circuit, $V = 220V$
Total power consumption for the given circuit, $P = \dfrac{{{V^2}}}{{{R_{eq}}}}$
$ \Rightarrow P = \dfrac{{{{220}^2}}}{{484}}$
$ \Rightarrow P = \dfrac{{220 \times 220}}{{484}}$
$ \Rightarrow P = 100W$
So, the total power consumption for the given circuit is $100\;W$.
Hence, The correct answer is option (C) $100\;W$.
Note There are two formulae to calculate the power of a given circuit:
1. $P = {I^2}R$, where I stands for the current and R stands for the resistance
2. $P = \dfrac{{{V^2}}}{R}$ , where V stands for the voltage and R stands for the resistance
We use these formulae depending on the quantities provided to us in the question. Here, the voltages of individual bulbs and also the voltage of the complete circuit are given to us, so we have used the second formula.
Recently Updated Pages
JEE Main Login 2025 - Step-by-Step Explanation
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
JEE Main 2025 Application Form Session 1 Out - Apply Now
JEE Main 2025 Registration Ends Today: Apply Now for January Session
JEE Main OMR Sheet 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking