Answer
Verified
445.8k+ views
Hint:When two lines are perpendicular to each other or intersect each other at ${90^ \circ }$, it is known as right angle. So draw the figures of each structure and try to find the number of right angles present.
Complete step by step answer:
$P\,C{l_5}$ has a shape of Trigonal Bi Pyramidal geometry with a molecule of $s{p_3}d$. Total valence electron present in $P\,C{l_5}$ are:
$P\,C{l_5}$$ \to $ Cl in group $17$ so $5 \times 7 = 35$ and P is in group 15 so it has $5$ electrons
Total electrons $ = 35 + 5 = 40\,V.E.$
Now Phosphorous is going to be in center as it can hold a lot of bonds.
Five P-Cl bonds are formed.
There are $3$ bonds of $P - Cl$ which are at an angle of ${120^ \circ }$ and thus are known as equatorial bonds.
Other $2$$P - Cl$ bonds are called axial bonds as these are at right angles to the equatorial bonds, i.e. one above and one below the plane.
So now there are $2$ axial bonds where each of them are at right angles to $3$ equatorial bonds thus giving $6$ right angles. But $\angle Cl\,P\,Cl$ are $2$, so its answer is $2$
$P\,C{l_4}^ + $- It has a tetrahedral shape of tetrahedral. The oxidation state of P in $P\,C{l_4}^ + $ is $5$. Total valence electrons present in $P\,C{l_4}^ + $ is
$P\,C{l_4}^ + $$ \to $Cl has $4 \times 7 = 28\,V.E.$ and P has $5\,V.E.$
Total valence electrons$ = 5 + 28 - 1$, this minus one is due to presence of negative sign on top.
OR
It has $4$ bonding pairs and no lone pair. The bonds are pointing towards the corners of a regular tetrahedron. It was $s{p^3}$ hybridisation. Thus $P\,C{l_4}^ + $ has four right angles $\angle Cl\,P\,Cl$.
$P\,C{l_6}^ - $- It has octahedral structure and $s{p_3}{d_2}$ hybridization.
For $P\,C{l_6}^ - $ we have $ + 8$ valence electrons $(5 + (6 \times 7) + 1)$
Structure for $P\,C{l_6}^ - $ is as follow
Hence we can see from the shape there is no right angle present between $\angle Cl\,P\,Cl$. So it has zero right angles.
So correct option is C
$P\,C{l_5}$ has $2\,\,\angle Cl\,P\,Cl$ right angles
$P\,C{l_4}^ + $ has $4\,\,\angle Cl\,P\,Cl$ right angles
$P\,C{l_6}^ - $ has $0\,\,\angle Cl\,P\,Cl$ right angles.
Note: As we all know that bond angles are the geometric angles between two adjacent bonds. The molecular structure and the bond angles are dependent on each other. The atoms except the central atom of molecule adjust themselves in such a way so that they can feel less repulsion from each other and to do so they acquire maximum bond angles as much as possible.
Complete step by step answer:
$P\,C{l_5}$ has a shape of Trigonal Bi Pyramidal geometry with a molecule of $s{p_3}d$. Total valence electron present in $P\,C{l_5}$ are:
$P\,C{l_5}$$ \to $ Cl in group $17$ so $5 \times 7 = 35$ and P is in group 15 so it has $5$ electrons
Total electrons $ = 35 + 5 = 40\,V.E.$
Now Phosphorous is going to be in center as it can hold a lot of bonds.
Five P-Cl bonds are formed.
There are $3$ bonds of $P - Cl$ which are at an angle of ${120^ \circ }$ and thus are known as equatorial bonds.
Other $2$$P - Cl$ bonds are called axial bonds as these are at right angles to the equatorial bonds, i.e. one above and one below the plane.
So now there are $2$ axial bonds where each of them are at right angles to $3$ equatorial bonds thus giving $6$ right angles. But $\angle Cl\,P\,Cl$ are $2$, so its answer is $2$
$P\,C{l_4}^ + $- It has a tetrahedral shape of tetrahedral. The oxidation state of P in $P\,C{l_4}^ + $ is $5$. Total valence electrons present in $P\,C{l_4}^ + $ is
$P\,C{l_4}^ + $$ \to $Cl has $4 \times 7 = 28\,V.E.$ and P has $5\,V.E.$
Total valence electrons$ = 5 + 28 - 1$, this minus one is due to presence of negative sign on top.
It has $4$ bonding pairs and no lone pair. The bonds are pointing towards the corners of a regular tetrahedron. It was $s{p^3}$ hybridisation. Thus $P\,C{l_4}^ + $ has four right angles $\angle Cl\,P\,Cl$.
$P\,C{l_6}^ - $- It has octahedral structure and $s{p_3}{d_2}$ hybridization.
For $P\,C{l_6}^ - $ we have $ + 8$ valence electrons $(5 + (6 \times 7) + 1)$
Structure for $P\,C{l_6}^ - $ is as follow
Hence we can see from the shape there is no right angle present between $\angle Cl\,P\,Cl$. So it has zero right angles.
So correct option is C
$P\,C{l_5}$ has $2\,\,\angle Cl\,P\,Cl$ right angles
$P\,C{l_4}^ + $ has $4\,\,\angle Cl\,P\,Cl$ right angles
$P\,C{l_6}^ - $ has $0\,\,\angle Cl\,P\,Cl$ right angles.
Note: As we all know that bond angles are the geometric angles between two adjacent bonds. The molecular structure and the bond angles are dependent on each other. The atoms except the central atom of molecule adjust themselves in such a way so that they can feel less repulsion from each other and to do so they acquire maximum bond angles as much as possible.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE