
Two closed vessels A and B of equal volume containing air at pressure $P_1$ and temperature T1 are connected to each other through a narrow open tube. If the temperature of one is now maintained at $T_1$ and another at $T_2$ (where $T_1$>$T_2$) then what will be the final pressure?
\[\dfrac{{{T_1}}}{{2{P_1}{T_2}}}\],
A.$\dfrac{{{{{T}}_{{1}}}}}{{2{{{P}}_{{1}}}{{{T}}_{{2}}}}}$
B.$\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{1}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}$
C.$\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{{12}}}}}}{{{{{T}}_{{1}}}{{ - }}{{{T}}_{{2}}}}}$
D.$\dfrac{{{{2}}{{{P}}_{{1}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}$
Answer
483.6k+ views
Hint:First find the equation for how many moles are transferred and then find the equation for volume. Then put these two in the initial equations.
Complete step by step answer: Let’s start with understanding the question and for understanding the questions we need to analyse all the given parameters. We are given that
Initial pressure and temperature of two closed vessels is equal and is $P_1$ and $T_1$ respectively. The two vessels are connected with narrow open tubes. The final temperature of vessel A and B is $T_1$ and $T_2$ respectively with $T_1$>$T_2$. Since both the vessels are connected then the final pressure in both the vessels will be the same. Let the final pressure be P.
Let’s assume that x amount of mole is transferred from A to B, now applying the Ideal gas equation we get,
${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ for vessel A and ${{{P}}_2}{{{V}}_{}}{{ = (n + x)R}}{{{T}}_2}$
This gives (n - x) R$T_1$ = (n + x) R$T_2$
x = $\dfrac{{{{n(}}{{{T}}_{{1}}}{{ - }}{{{T}}_{{2}}}{{)}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}$
Considering the initial temperature, volume and pressure we will get that
$P_1$ X 2V = 2nR$T_1$ => V = $\dfrac{{{{nR}}{{{T}}_1}}}{{{{{P}}_1}}}$
Putting the value of V and x in ${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ we get,
\[P_A \times \dfrac nRT_1P_1 = (n - \dfrac n(T_1- T_2T_1 + T_2)RT_1\]
Solving this we will get $P_2$ = \[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
So, the answer to this question is option B.\[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
Note: Diffusion is the concept which is largely studied in many fields to get an idea about how different glasses and liquids diffuse into each other. One of the most famous experiments which has been performed by almost everyone is that when you spray the perfume in one corner of the room the smell of the perfume spreads at every corner of the room. This is caused by diffusion of perfume molecules in the air.
Complete step by step answer: Let’s start with understanding the question and for understanding the questions we need to analyse all the given parameters. We are given that
Initial pressure and temperature of two closed vessels is equal and is $P_1$ and $T_1$ respectively. The two vessels are connected with narrow open tubes. The final temperature of vessel A and B is $T_1$ and $T_2$ respectively with $T_1$>$T_2$. Since both the vessels are connected then the final pressure in both the vessels will be the same. Let the final pressure be P.
Let’s assume that x amount of mole is transferred from A to B, now applying the Ideal gas equation we get,
${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ for vessel A and ${{{P}}_2}{{{V}}_{}}{{ = (n + x)R}}{{{T}}_2}$
This gives (n - x) R$T_1$ = (n + x) R$T_2$
x = $\dfrac{{{{n(}}{{{T}}_{{1}}}{{ - }}{{{T}}_{{2}}}{{)}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}$
Considering the initial temperature, volume and pressure we will get that
$P_1$ X 2V = 2nR$T_1$ => V = $\dfrac{{{{nR}}{{{T}}_1}}}{{{{{P}}_1}}}$
Putting the value of V and x in ${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ we get,
\[P_A \times \dfrac nRT_1P_1 = (n - \dfrac n(T_1- T_2T_1 + T_2)RT_1\]
Solving this we will get $P_2$ = \[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
So, the answer to this question is option B.\[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
Note: Diffusion is the concept which is largely studied in many fields to get an idea about how different glasses and liquids diffuse into each other. One of the most famous experiments which has been performed by almost everyone is that when you spray the perfume in one corner of the room the smell of the perfume spreads at every corner of the room. This is caused by diffusion of perfume molecules in the air.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
