Answer
Verified
459k+ views
Hint:First find the equation for how many moles are transferred and then find the equation for volume. Then put these two in the initial equations.
Complete step by step answer: Let’s start with understanding the question and for understanding the questions we need to analyse all the given parameters. We are given that
Initial pressure and temperature of two closed vessels is equal and is $P_1$ and $T_1$ respectively. The two vessels are connected with narrow open tubes. The final temperature of vessel A and B is $T_1$ and $T_2$ respectively with $T_1$>$T_2$. Since both the vessels are connected then the final pressure in both the vessels will be the same. Let the final pressure be P.
Let’s assume that x amount of mole is transferred from A to B, now applying the Ideal gas equation we get,
${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ for vessel A and ${{{P}}_2}{{{V}}_{}}{{ = (n + x)R}}{{{T}}_2}$
This gives (n - x) R$T_1$ = (n + x) R$T_2$
x = $\dfrac{{{{n(}}{{{T}}_{{1}}}{{ - }}{{{T}}_{{2}}}{{)}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}$
Considering the initial temperature, volume and pressure we will get that
$P_1$ X 2V = 2nR$T_1$ => V = $\dfrac{{{{nR}}{{{T}}_1}}}{{{{{P}}_1}}}$
Putting the value of V and x in ${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ we get,
\[P_A \times \dfrac nRT_1P_1 = (n - \dfrac n(T_1- T_2T_1 + T_2)RT_1\]
Solving this we will get $P_2$ = \[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
So, the answer to this question is option B.\[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
Note: Diffusion is the concept which is largely studied in many fields to get an idea about how different glasses and liquids diffuse into each other. One of the most famous experiments which has been performed by almost everyone is that when you spray the perfume in one corner of the room the smell of the perfume spreads at every corner of the room. This is caused by diffusion of perfume molecules in the air.
Complete step by step answer: Let’s start with understanding the question and for understanding the questions we need to analyse all the given parameters. We are given that
Initial pressure and temperature of two closed vessels is equal and is $P_1$ and $T_1$ respectively. The two vessels are connected with narrow open tubes. The final temperature of vessel A and B is $T_1$ and $T_2$ respectively with $T_1$>$T_2$. Since both the vessels are connected then the final pressure in both the vessels will be the same. Let the final pressure be P.
Let’s assume that x amount of mole is transferred from A to B, now applying the Ideal gas equation we get,
${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ for vessel A and ${{{P}}_2}{{{V}}_{}}{{ = (n + x)R}}{{{T}}_2}$
This gives (n - x) R$T_1$ = (n + x) R$T_2$
x = $\dfrac{{{{n(}}{{{T}}_{{1}}}{{ - }}{{{T}}_{{2}}}{{)}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}$
Considering the initial temperature, volume and pressure we will get that
$P_1$ X 2V = 2nR$T_1$ => V = $\dfrac{{{{nR}}{{{T}}_1}}}{{{{{P}}_1}}}$
Putting the value of V and x in ${{{P}}_2}{{{V}}_{}}{{ = (n - x)R}}{{{T}}_{{1}}}$ we get,
\[P_A \times \dfrac nRT_1P_1 = (n - \dfrac n(T_1- T_2T_1 + T_2)RT_1\]
Solving this we will get $P_2$ = \[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
So, the answer to this question is option B.\[\dfrac{{{{2}}{{{P}}_{{1}}}{{{T}}_{{2}}}}}{{{{{T}}_{{1}}}{{ + }}{{{T}}_{{2}}}}}\].
Note: Diffusion is the concept which is largely studied in many fields to get an idea about how different glasses and liquids diffuse into each other. One of the most famous experiments which has been performed by almost everyone is that when you spray the perfume in one corner of the room the smell of the perfume spreads at every corner of the room. This is caused by diffusion of perfume molecules in the air.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE