Answer
Verified
450.6k+ views
Hint: The ratio of intensities of first to second is equal to the square of ratio of their amplitudes. The ratio of maximum to minimum intensity is the square of sum of amplitudes to the difference of amplitudes. Thus by solving using this concept we will get the ratio of first intensity to the second intensity.
Formula used:
$\dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left[ \dfrac{{{A}_{1}}+{{A}_{2}}}{{{A}_{1}}-{{A}_{2}}} \right]}^{2}}$
where, ${{A}_{_{_{1}}}}$and ${{A}_{2}}$ are the amplitude of coherent light source.
$\dfrac{{{I}_{1}}}{{{I}_{2}}}={{\left( \dfrac{{{A}_{1}}}{{{A}_{2}}} \right)}^{2}}$
${{I}_{1}}$ and ${{I}_{2}}$ are the intensities of coherent light sources.
Complete step by step answer:
Given that,
$\dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left[ \dfrac{{{A}_{1}}+{{A}_{2}}}{{{A}_{1}}-{{A}_{2}}} \right]}^{2}}$=$\dfrac{16}{1}$
Taking the square root of the above equation we get,
$\dfrac{{{A}_{1}}+{{A}_{2}}}{{{A}_{1}}-{{A}_{2}}}=\dfrac{4}{1}$
$\Rightarrow $ ${{A}_{1}}+{{A}_{2}}=4\left( {{A}_{1}}-{{A}_{2}} \right)$
$\Rightarrow $ $5{{A}_{2}}=3{{A}_{1}}$
Then,
$\dfrac{{{A}_{1}}}{{{A}_{2}}}=\dfrac{5}{3}$
Therefore,
$\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}={{\left( \dfrac{{{A}_{1}}}{{{A}_{2}}} \right)}^{2}}$=${{\left( \dfrac{5}{3} \right)}^{2}}=\dfrac{25}{9}$
Thus the ratio of their intensity is $\dfrac{25}{9}$.
Additional information:
A coherent light may be a light that's capable of manufacturing radiation with waves vibrating in phase. The laser is an example of a coherent light . A laser produces coherent light through a process referred to as stimulated emission.
To set up a stable and clear interference pattern, two conditions must be met. The sources of the waves must be coherent. The waves should be monochromatic. That is, they should be of single wavelength or single colour.
Note:
The ratio of intensities of first to second is the ratio of square of their amplitudes. Note that the T ratio of intensities of first to second is not equal to the ratio of their amplitudes, but the square of their amplitudes.
Formula used:
$\dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left[ \dfrac{{{A}_{1}}+{{A}_{2}}}{{{A}_{1}}-{{A}_{2}}} \right]}^{2}}$
where, ${{A}_{_{_{1}}}}$and ${{A}_{2}}$ are the amplitude of coherent light source.
$\dfrac{{{I}_{1}}}{{{I}_{2}}}={{\left( \dfrac{{{A}_{1}}}{{{A}_{2}}} \right)}^{2}}$
${{I}_{1}}$ and ${{I}_{2}}$ are the intensities of coherent light sources.
Complete step by step answer:
Given that,
$\dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left[ \dfrac{{{A}_{1}}+{{A}_{2}}}{{{A}_{1}}-{{A}_{2}}} \right]}^{2}}$=$\dfrac{16}{1}$
Taking the square root of the above equation we get,
$\dfrac{{{A}_{1}}+{{A}_{2}}}{{{A}_{1}}-{{A}_{2}}}=\dfrac{4}{1}$
$\Rightarrow $ ${{A}_{1}}+{{A}_{2}}=4\left( {{A}_{1}}-{{A}_{2}} \right)$
$\Rightarrow $ $5{{A}_{2}}=3{{A}_{1}}$
Then,
$\dfrac{{{A}_{1}}}{{{A}_{2}}}=\dfrac{5}{3}$
Therefore,
$\Rightarrow \dfrac{{{I}_{1}}}{{{I}_{2}}}={{\left( \dfrac{{{A}_{1}}}{{{A}_{2}}} \right)}^{2}}$=${{\left( \dfrac{5}{3} \right)}^{2}}=\dfrac{25}{9}$
Thus the ratio of their intensity is $\dfrac{25}{9}$.
Additional information:
A coherent light may be a light that's capable of manufacturing radiation with waves vibrating in phase. The laser is an example of a coherent light . A laser produces coherent light through a process referred to as stimulated emission.
To set up a stable and clear interference pattern, two conditions must be met. The sources of the waves must be coherent. The waves should be monochromatic. That is, they should be of single wavelength or single colour.
Note:
The ratio of intensities of first to second is the ratio of square of their amplitudes. Note that the T ratio of intensities of first to second is not equal to the ratio of their amplitudes, but the square of their amplitudes.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE