![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Two consecutive angles of a parallelogram are in ratio 1:6, then which of the following is the smaller angle:
A. $\dfrac{1080}{7}$
B. $\dfrac{180}{7}$
C. $\dfrac{540}{7}$
D. None of these
Answer
468.9k+ views
Hint: We are given that the two consecutive angles of a parallelogram are in ratio 1:6. Let us consider x to be one angle, that is, $\angle ABC\text{ }$ of a parallelogram ABCD. Then, the other angle will be $\angle BCD=6x$ which is obtained from the ratio $\dfrac{\angle ABC}{\angle BCD}=\dfrac{1}{6}$ . We know that the sum of two consecutive angles of a parallelogram is ${{180}^{{}^\circ }}$ . Hence, $x+6x={{180}^{{}^\circ }}$ . Now, we have to solve this equation to get the value of x and substitute in $\angle BCD=6x$ to find the other angle.
Complete step-by-step answer:
We are given that the two consecutive angles of a parallelogram are in ratio 1:6. Let us consider a parallelogram ABCD as shown below.
Let us consider $\angle ABC\text{ and }\angle BCD\text{ }$ . These angles are in the ratio 1:6.
$\Rightarrow \dfrac{\angle ABC}{\angle BCD}=\dfrac{1}{6}$
Let us assume $\angle ABC=x\text{ }$ . Then
$\begin{align}
& \dfrac{x}{\angle BCD}=\dfrac{1}{6} \\
& \Rightarrow \angle BCD=6x \\
\end{align}$
We know that the sum of two consecutive angles of a parallelogram is ${{180}^{{}^\circ }}$ . Hence,
$x+6x={{180}^{{}^\circ }}$
On adding the terms in LHS, we will get
\[\begin{align}
& 7x={{180}^{{}^\circ }} \\
& \Rightarrow x={{\left( \dfrac{180}{7} \right)}^{{}^\circ }} \\
\end{align}\]
Now, let’s find $\angle BCD$.
$\angle BCD=6\times \dfrac{180}{7}={{\left( \dfrac{1080}{7} \right)}^{{}^\circ }}$
Hence, the smallest angle is \[{{\left( \dfrac{180}{7} \right)}^{{}^\circ }}\] .
Hence, the correct option is B.
So, the correct answer is “Option B”.
Note: You need not find $\angle BCD$ as it is six times $\angle ABC$ and will be certainly greater than $\angle ABC$ . You may make a mistake by writing the sum of two consecutive angles of a parallelogram as ${{90}^{{}^\circ }}$ . You must know the theorems associated with parallelograms to solve this question.
Complete step-by-step answer:
We are given that the two consecutive angles of a parallelogram are in ratio 1:6. Let us consider a parallelogram ABCD as shown below.
![seo images](https://www.vedantu.com/question-sets/c415efce-857f-4fe9-b0e9-7fb6b576df254503237305495950450.png)
Let us consider $\angle ABC\text{ and }\angle BCD\text{ }$ . These angles are in the ratio 1:6.
$\Rightarrow \dfrac{\angle ABC}{\angle BCD}=\dfrac{1}{6}$
Let us assume $\angle ABC=x\text{ }$ . Then
$\begin{align}
& \dfrac{x}{\angle BCD}=\dfrac{1}{6} \\
& \Rightarrow \angle BCD=6x \\
\end{align}$
We know that the sum of two consecutive angles of a parallelogram is ${{180}^{{}^\circ }}$ . Hence,
$x+6x={{180}^{{}^\circ }}$
On adding the terms in LHS, we will get
\[\begin{align}
& 7x={{180}^{{}^\circ }} \\
& \Rightarrow x={{\left( \dfrac{180}{7} \right)}^{{}^\circ }} \\
\end{align}\]
Now, let’s find $\angle BCD$.
$\angle BCD=6\times \dfrac{180}{7}={{\left( \dfrac{1080}{7} \right)}^{{}^\circ }}$
Hence, the smallest angle is \[{{\left( \dfrac{180}{7} \right)}^{{}^\circ }}\] .
Hence, the correct option is B.
So, the correct answer is “Option B”.
Note: You need not find $\angle BCD$ as it is six times $\angle ABC$ and will be certainly greater than $\angle ABC$ . You may make a mistake by writing the sum of two consecutive angles of a parallelogram as ${{90}^{{}^\circ }}$ . You must know the theorems associated with parallelograms to solve this question.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write an application to the principal requesting five class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)