Answer
Verified
447.9k+ views
Hint: We are given that the two consecutive angles of a parallelogram are in ratio 1:6. Let us consider x to be one angle, that is, $\angle ABC\text{ }$ of a parallelogram ABCD. Then, the other angle will be $\angle BCD=6x$ which is obtained from the ratio $\dfrac{\angle ABC}{\angle BCD}=\dfrac{1}{6}$ . We know that the sum of two consecutive angles of a parallelogram is ${{180}^{{}^\circ }}$ . Hence, $x+6x={{180}^{{}^\circ }}$ . Now, we have to solve this equation to get the value of x and substitute in $\angle BCD=6x$ to find the other angle.
Complete step-by-step answer:
We are given that the two consecutive angles of a parallelogram are in ratio 1:6. Let us consider a parallelogram ABCD as shown below.
Let us consider $\angle ABC\text{ and }\angle BCD\text{ }$ . These angles are in the ratio 1:6.
$\Rightarrow \dfrac{\angle ABC}{\angle BCD}=\dfrac{1}{6}$
Let us assume $\angle ABC=x\text{ }$ . Then
$\begin{align}
& \dfrac{x}{\angle BCD}=\dfrac{1}{6} \\
& \Rightarrow \angle BCD=6x \\
\end{align}$
We know that the sum of two consecutive angles of a parallelogram is ${{180}^{{}^\circ }}$ . Hence,
$x+6x={{180}^{{}^\circ }}$
On adding the terms in LHS, we will get
\[\begin{align}
& 7x={{180}^{{}^\circ }} \\
& \Rightarrow x={{\left( \dfrac{180}{7} \right)}^{{}^\circ }} \\
\end{align}\]
Now, let’s find $\angle BCD$.
$\angle BCD=6\times \dfrac{180}{7}={{\left( \dfrac{1080}{7} \right)}^{{}^\circ }}$
Hence, the smallest angle is \[{{\left( \dfrac{180}{7} \right)}^{{}^\circ }}\] .
Hence, the correct option is B.
So, the correct answer is “Option B”.
Note: You need not find $\angle BCD$ as it is six times $\angle ABC$ and will be certainly greater than $\angle ABC$ . You may make a mistake by writing the sum of two consecutive angles of a parallelogram as ${{90}^{{}^\circ }}$ . You must know the theorems associated with parallelograms to solve this question.
Complete step-by-step answer:
We are given that the two consecutive angles of a parallelogram are in ratio 1:6. Let us consider a parallelogram ABCD as shown below.
Let us consider $\angle ABC\text{ and }\angle BCD\text{ }$ . These angles are in the ratio 1:6.
$\Rightarrow \dfrac{\angle ABC}{\angle BCD}=\dfrac{1}{6}$
Let us assume $\angle ABC=x\text{ }$ . Then
$\begin{align}
& \dfrac{x}{\angle BCD}=\dfrac{1}{6} \\
& \Rightarrow \angle BCD=6x \\
\end{align}$
We know that the sum of two consecutive angles of a parallelogram is ${{180}^{{}^\circ }}$ . Hence,
$x+6x={{180}^{{}^\circ }}$
On adding the terms in LHS, we will get
\[\begin{align}
& 7x={{180}^{{}^\circ }} \\
& \Rightarrow x={{\left( \dfrac{180}{7} \right)}^{{}^\circ }} \\
\end{align}\]
Now, let’s find $\angle BCD$.
$\angle BCD=6\times \dfrac{180}{7}={{\left( \dfrac{1080}{7} \right)}^{{}^\circ }}$
Hence, the smallest angle is \[{{\left( \dfrac{180}{7} \right)}^{{}^\circ }}\] .
Hence, the correct option is B.
So, the correct answer is “Option B”.
Note: You need not find $\angle BCD$ as it is six times $\angle ABC$ and will be certainly greater than $\angle ABC$ . You may make a mistake by writing the sum of two consecutive angles of a parallelogram as ${{90}^{{}^\circ }}$ . You must know the theorems associated with parallelograms to solve this question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE