Answer
Verified
498.6k+ views
Hint- To determine the probability, first we have to define the event and make the sample space and then proceed further using probability definition.
Given that the two dice are thrown together. So the total possible conditions will be
$6 \times 6 = 36$
Let ${E_1}$ be the event of getting sum as $5$
The possible combination of the top faces of the die for the event ${E_1}$
${E_1} = \{ (1,4),(4,1),(2,3),(3,2)\} $
The probability of event \[\;\;{E_1} = P({E_1}) = \dfrac{4}{{36}}\]
Let ${E_2}$ be the event of getting a number greater or equal on the top face of the second die than that of the first die.
The possible combinations of top face of die for event ${E_2}$
$
{E_2} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6), \\
(4,4),(4,5),(4,6), \\
(5,5),(5,6), \\
(6,6)\} \\
$
The probability of the event ${E_2} = P({E_2}) = \dfrac{{21}}{{36}}$
Let $E$ be the event that one of the two events ${E_1}$ or ${E_2}$ will occur
Hence the probability of event $E$ will be sum of the probability of events ${E_1}$and ${E_2}$
$
P(E) = P({E_1}) + P({E_2}) \\
P(E) = \dfrac{4}{{36}} + \dfrac{{21}}{{36}} = \dfrac{{25}}{{36}} \\
$
Note- In this type of numerical first try to declare the events and make the sample space and keep in mind the conditions given in the question and proceed according to the conditions. Probability of occurrence of an event is ratio of number of favorable outcomes over total number of possible outcomes of the given event.
Given that the two dice are thrown together. So the total possible conditions will be
$6 \times 6 = 36$
Let ${E_1}$ be the event of getting sum as $5$
The possible combination of the top faces of the die for the event ${E_1}$
${E_1} = \{ (1,4),(4,1),(2,3),(3,2)\} $
The probability of event \[\;\;{E_1} = P({E_1}) = \dfrac{4}{{36}}\]
Let ${E_2}$ be the event of getting a number greater or equal on the top face of the second die than that of the first die.
The possible combinations of top face of die for event ${E_2}$
$
{E_2} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,3),(3,4),(3,5),(3,6), \\
(4,4),(4,5),(4,6), \\
(5,5),(5,6), \\
(6,6)\} \\
$
The probability of the event ${E_2} = P({E_2}) = \dfrac{{21}}{{36}}$
Let $E$ be the event that one of the two events ${E_1}$ or ${E_2}$ will occur
Hence the probability of event $E$ will be sum of the probability of events ${E_1}$and ${E_2}$
$
P(E) = P({E_1}) + P({E_2}) \\
P(E) = \dfrac{4}{{36}} + \dfrac{{21}}{{36}} = \dfrac{{25}}{{36}} \\
$
Note- In this type of numerical first try to declare the events and make the sample space and keep in mind the conditions given in the question and proceed according to the conditions. Probability of occurrence of an event is ratio of number of favorable outcomes over total number of possible outcomes of the given event.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE