Answer
Verified
429.3k+ views
Hint:We need to first find the general theorem for the value increase by percentage. We increase the value of a number by a certain percentage and use the theorem $x\left( 1+\dfrac{m}{100} \right)=y$. For our given problem we replace those values to get the required number.
Complete step by step solution:
We have to find the value of the number which can be achieved by increasing 200 by 20%.
Let us take two arbitrary numbers x and y where we know that we can get y by increasing the value of x by m%.
Then the relation can be expressed as $x\left( 1+\dfrac{m}{100} \right)=y$.
Similarly, we get our required number by increasing the number 200 by 20%.
We replace the values where we take $x=200,m=20$.
The new value of the number will be $200\left( 1+\dfrac{20}{100} \right)$.
We try to find the fraction value of $\dfrac{20}{100}$. 100 is divisible by 20. It’s also GCD of 20 and 100.
So, $\dfrac{20}{100}=\dfrac{1}{5}$. We place the value and get $200\left( 1+\dfrac{1}{5}
\right)=200\left( \dfrac{6}{5} \right)$
The multiplied form is $\dfrac{200\times 6}{5}=40\times 6=240$.
Therefore, increasing Two hundred by 20%, we get 240.
Note: We need to remember that the decrease of numbers or anything by percentage works in the same way. The formula for decrease is $x\left( 1-\dfrac{m}{100} \right)=y$. The sign in between is only different. We can also express the primary number with respect to the new number where \[x=\dfrac{y}{\left( 1\pm \dfrac{m}{100} \right)}\].
Complete step by step solution:
We have to find the value of the number which can be achieved by increasing 200 by 20%.
Let us take two arbitrary numbers x and y where we know that we can get y by increasing the value of x by m%.
Then the relation can be expressed as $x\left( 1+\dfrac{m}{100} \right)=y$.
Similarly, we get our required number by increasing the number 200 by 20%.
We replace the values where we take $x=200,m=20$.
The new value of the number will be $200\left( 1+\dfrac{20}{100} \right)$.
We try to find the fraction value of $\dfrac{20}{100}$. 100 is divisible by 20. It’s also GCD of 20 and 100.
So, $\dfrac{20}{100}=\dfrac{1}{5}$. We place the value and get $200\left( 1+\dfrac{1}{5}
\right)=200\left( \dfrac{6}{5} \right)$
The multiplied form is $\dfrac{200\times 6}{5}=40\times 6=240$.
Therefore, increasing Two hundred by 20%, we get 240.
Note: We need to remember that the decrease of numbers or anything by percentage works in the same way. The formula for decrease is $x\left( 1-\dfrac{m}{100} \right)=y$. The sign in between is only different. We can also express the primary number with respect to the new number where \[x=\dfrac{y}{\left( 1\pm \dfrac{m}{100} \right)}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers