Answer
Verified
473.4k+ views
Hint: For solving this question we will use Coulomb's law which is nothing but the relation between and charge on bodies and corresponding force generated. Later we will see the force on two identical spheres separated by some distance greater than its diameter.
Formula used- The force between two charges is given by
$F = \dfrac{{k{q_1}{q_2}}}{{{d^2}}}$
Where F is the force, ${q_1}\& {q_2}$ are the two charges respectively and d is the distance between them.
Complete step-by-step answer:
Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of the quantity of charge on the objects and inversely proportional to the square of the separation distance between the two objects.
its scalar form, the law is:
$F = \dfrac{{k{q_1}{q_2}}}{{{d^2}}}$
Where k is Coulomb's constant ( \[k \approx 9 \times {10^9}N{m^2}{C^{ - 2}}\] ), $q_1$ and $q_2$ are the signed magnitudes of the charges, and the scalar r is the distance between the charges. The force of the interaction between the charges is attractive if the charges have opposite signs (i.e., F is negative) and repulsive if like-signed (i.e., F is positive).
Since, the initial charge on the both spheres is q
Therefore force between them is given by above formula
$F = \dfrac{{k{q_1}{q_2}}}{{{d^2}}}$
$F = \dfrac{{K{q^2}}}{{{d^2}}}...........\left( 1 \right)$
First sphere C comes in the contact of sphere A, the charge distribution will be equal
${q_c} = {q_A} = \dfrac{q}{2}$
As the sphere C comes in the contact of sphere B, the charge will distribute equally between both of them, therefore the final charge on both of them will be
${q_c} = {q_d} = \dfrac{{q/2 + q}}{2} = \dfrac{{3q}}{4}$
Therefore the force between A and B will be given as
$
F' = \dfrac{{K \times \dfrac{q}{2} \times \dfrac{{3q}}{4}}}{{{d^2}}} \\
F' = \dfrac{{3F}}{8} \\
$
Hence, the correct option is “D”.
Note: Electric charge has the dimension electric current time. The SI derived unit of electric charge is the coulomb, which is defined as an ampere second whereas the force has the unit Newton. Also, two positive charges repel each other and the positive and negative charges attract each other or in general like charges repel each other and unlike charges attract each other.
Formula used- The force between two charges is given by
$F = \dfrac{{k{q_1}{q_2}}}{{{d^2}}}$
Where F is the force, ${q_1}\& {q_2}$ are the two charges respectively and d is the distance between them.
Complete step-by-step answer:
Coulomb's law states that the electrical force between two charged objects is directly proportional to the product of the quantity of charge on the objects and inversely proportional to the square of the separation distance between the two objects.
its scalar form, the law is:
$F = \dfrac{{k{q_1}{q_2}}}{{{d^2}}}$
Where k is Coulomb's constant ( \[k \approx 9 \times {10^9}N{m^2}{C^{ - 2}}\] ), $q_1$ and $q_2$ are the signed magnitudes of the charges, and the scalar r is the distance between the charges. The force of the interaction between the charges is attractive if the charges have opposite signs (i.e., F is negative) and repulsive if like-signed (i.e., F is positive).
Since, the initial charge on the both spheres is q
Therefore force between them is given by above formula
$F = \dfrac{{k{q_1}{q_2}}}{{{d^2}}}$
$F = \dfrac{{K{q^2}}}{{{d^2}}}...........\left( 1 \right)$
First sphere C comes in the contact of sphere A, the charge distribution will be equal
${q_c} = {q_A} = \dfrac{q}{2}$
As the sphere C comes in the contact of sphere B, the charge will distribute equally between both of them, therefore the final charge on both of them will be
${q_c} = {q_d} = \dfrac{{q/2 + q}}{2} = \dfrac{{3q}}{4}$
Therefore the force between A and B will be given as
$
F' = \dfrac{{K \times \dfrac{q}{2} \times \dfrac{{3q}}{4}}}{{{d^2}}} \\
F' = \dfrac{{3F}}{8} \\
$
Hence, the correct option is “D”.
Note: Electric charge has the dimension electric current time. The SI derived unit of electric charge is the coulomb, which is defined as an ampere second whereas the force has the unit Newton. Also, two positive charges repel each other and the positive and negative charges attract each other or in general like charges repel each other and unlike charges attract each other.
Recently Updated Pages
Fill in the blanks with a suitable option She showed class 10 english CBSE
TISCO is located on the banks of which river A Tungabhadra class 10 social science CBSE
What is greed for clothes A Simply desire to have them class 10 social science CBSE
What does the 17th Parallel line separate A South and class 10 social science CBSE
The original home of the gypsies was A Egypt B Russia class 10 social science CBSE
The angle between the true north south line and the class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
Which is the longest day and shortest night in the class 11 sst CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE